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OBSERVATIONS

Recognition Memory ROCs and the Dual-Process Signal-Detection
Model: Comment on Glanzer, Kim, Hilford, and Adams (1999)

Andrew P. Yonelinas
University of California, Davis

An examination of recognition memory receiver-operating characteristics (ROCs) showed
that large increases in accuracy often do not affect the observed asymmetry of the ROC.
However, M. Glanzer, K. Kim, A. Hilford, and J. Adams (1999) reported several experiments
showing that changes in accuracy do sometimes influence the asymmetry of the function.
Although the observed dissociations between accuracy and asymmetry are consistent with the
predictions of the dual-process signal-detection model (A. P. Yonelinas, 1994), they argued
that the shape of the observed ROCs deviated from that predicted by the model and implied
that the data were more consistent with an unequal-variance signal-detection model. However,
they did pot directly test the dual-process model, rather they conducted two indirect
assessments and inferred that the original model must be inaccurate. In this article, the author
directly fit the dual-process and the unequal-variance signal-detection models to Glanzer et
al.’s observed data and showed that both models provided an accurate account of the ROCs,
capturing more than 99.9% of the variance of the average ROCs. In agreement with previous
studies, these analyses show that standard recognition memory ROCs do not clearly
differentiate between these models. This article describes a broader range of ROC data that do
differentiate between the two models and that provide evidence in favor of the dual-process

model. A postscript responds to M. Glanzer, A. Hilford, K. Kim, and J. Adams (1999).

The study of recognition memory receiver-operating
characteristics (ROCs, which plot the proportion of hits on
the ordinate and the proportion of false alarms on the
abscissa) has played an important role in the development of
memory theory. For example, Murdock (1965) showed that
recognition ROCs were curvilinear and that these results
contradicted an entire class of “threshold” models that were
popular at the time (see also Banks, 1970; Kinchla, 1994;
Parks, 1966). These results ushered in the current era of
recognition models, which were inspired by signal-detection
theory (e.g., Green & Swets, 1966) and were more consis-
tent with the curvilinear ROCs (e.g., Gillund & Shiffrin,
1984; Hintzman, 1986; Murdock, 1982; Norman & Wickel-
gren, 1969). However, Ratcliff, Sheu, and Gronlund (1992)
found that recognition ROCs were almost always asymmetri-
cal and that the degree of asymmetry was quite constant. For
example, the upper two functions in Figure 1 are asymmetri-
cal along the diagonal and are representative of many
recognition memory experiments. Although these ROCs can
be accounted for by some forms of signal-detection theory,
Ratcliff et al. (1992) showed that these ROCs contradicted
several global memory models—for example, theory of
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distributed associative memory (TODAM; Murdock, 1982);
search of associative memory (SAM; Gillund & Shiffrin,
1984); and MINERVA 2 (Hintzman, 1986). More recently,
Yonelinas (1994) examined recognition ROCs using Jaco-
by’s (1991) process-dissociation procedure and found that
the ROCs were consistent with a very simple dual-process
signal-detection model. The model is described in more
detail below, but the basic idea is that the curvilinearity of
the observed ROC is due to the contribution of a familiarity
process and the asymmetry is due to a separate recollection
process.

Glanzer, Kim, Hilford, and Adams (1999) report a new set
of ROC experiments that promise to provide important
insights into the processes underlying recognition memory.
They found that although it was true that in some cases
increases in accuracy did not influence the degree of ROC
asymmetry, there were conditions under which increases in
recognition accuracy were accompanied by increases in
ROC asymmetry. For example, when recognition perfor-
mance was increased by manipulation of study duration,
word frequency, or levels of processing, the ROCs became
more asymmetrical. In contrast, increasing the number of
times an item was studied led to an increase in performance
with no detectable effect on asymmetry.

Glanzer, Kim, et al. (1999) draw two conclusions from
these results. First, they argue that the degree of ROC
asymmetry can change as accuracy increases. This follows
directly from an examination of their ROCs and is supported
by a large number of previous studies (e.g., Donaldson &
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Figure 1. Recognition memory ROCs. The upper solid function

represents the unequal-variance signal-detection model (UVSD).
The dashed line represents the dual-process signal-detection model
(DPSD) in which both recollection (R) and familiarity (¥) contrib-
ute to performance. The lower function reflects familiarity alone,
that is, an equal-variance signal-detection model (EVSD). Note
that the upper functions approximate the average ROCs observed
in Glanzer, Kim, et al. (1999).

Murdock, 1968; Gehring, Toglia, & Kimble, 1976; Glanzer
& Adams, 1990; Yonelinas, 1994). However, they also
conducted two indirect assessments of the dual-process
model (Yonelinas, 1994) and argued that the recognition
ROCs were inconsistent with that model. I first briefly
describe the dual-process model and show the types of
ROC:s it predicts. I then discuss the shortcomings of Glanzer,
Kim, et al.’s indirect model assessments. I then directly fit
the dual-process and the unequal-variance signal-detection
models to the ROCs, something that Glanzer, Kim, et al. did
not do, and show that both models provide excellent, and
very similar, accounts of the data. Finally, I describe a
broader range of ROC data that argue in favor of the
dual-process model.

The Dual-Process Signal-Detection Model

The dual-process model assumes that recognition memory
judgments can be based either on the assessment of familiar-
ity, a process that is well described by the classical signal-
detection theory that underlies standard 4’ reference tables,
or on recollection, a process well described by threshold
theory (see Murdock, 1974, for a discussion of signal-
detection and threshold theories). If performance relies
exclusively on familiarity, then the model predicts a curvilin-
ear ROC that is symmetrical along the diagonal (e.g., the
lower function in Figure 1). However, if participants recol-
lect some proportion of the studied items, then this will
increase the hit rate and effectively push the ROC up,
forming an asymmetrical ROC (e.g., the upper dashed

function in Figure 1). The model requires two free memory
parameters to generate an ROC: R, which represents the probabil-
ity that a studied item is recollected, and d’, which represents
the average increase in familiarity associated with studying
an item. The model equations are described in the Appendix.

The model predicts that it should be possible to find cases
in which the ROC becomes more asymmetrical as recogni-
tion accuracy increases. That is, if recollection increases and
familiarity remains relatively constant, then performance
should increase and the ROC should become more asym-
metrical. This is exactly what Glanzer, Kim, et al. (1999)
report. Thus, their main findings are quite easily accommo-
dated by the model. The model can also account for cases in
which increases in accuracy do not influence the degree of
asymmetry (e.g., Ratcliff et al., 1992). That is, if recollection
and familiarity increase approximately equally, then the
increase in asymmetry caused by recollection can be offset
by the increase in symmetry caused by familiarity (see
Yonelinas, 1994, for an illustration of these predictions).

The pattern of results can also be explained by an
unequal-variance signal-detection model. This is the model
that underlies all of Glanzer, Kim, et al.’s (1999) ROC
analyses and is the model that they appeared to favor over
the dual-process model. The model assumes that the old and
new item distributions are Gaussian and that the variance of
the old item distribution can differ from that of the new item
distribution. For example, the upper solid function in Figure
1 reflects an asymmetrical ROC generated by the unequal-
variance signal-detection model when the variance of the old
item distribution is greater than that of the new item
distribution. Like the dual-process model, the unequal-
variance model requires two free memory parameters to
generate an ROC: d', which represents the average increase
in familiarity or memory strength associated with studying
an item, and V,, which represents the variance of the old
item distribution (assuming the variance of the new item
distribution is equal to 1).

Both the unequal-variance model and the dual-process
model can account for the accuracy and asymmetry findings
reported by Glanzer, Kim, et al. (1999). Moreover, as Figure
1 illustrates, they can produce very similar ROCs. However,
a careful examination of Figure 1 shows that the dual-
process model tends to predict a slightly flatter function than
does the unequal-variance model. It is this subtle difference
that Glanzer, Kim, et al. focused on in testing the dual-
process model.

Glanzer, Kim, et al.’s (1999) ROC Analyses

To assess the dual-process model, Glanzer, Kim, et al.
chose not to directly fit the model to the data, rather they
conducted two indirect assessments: First, they z-trans-
formed the ROCs and tested for U-shaped z-ROCs. Second,
they developed and tested a new dual-process regression
equation. However, there are important limitations with both
of these indirect assessment methods. Moreover, when the
dual-process model is actually fit to the observed ROCs, it
becomes clear that the model is in good agreement with the
recognition data.
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U-Shaped z-ROCs

Replotting the ROCs in z-space and assessing linearity
provides a way of contrasting the dual-process and the
unequal-variance signal-detection models. Because the un-
equal-variance model assumes Gaussian confidence distribu-
tions, it predicts a perfectly linear ROC in z-space (this is
referred to as a z-ROC). Thus, finding a deviation from
linearity would show that the Gaussian assumption was
violated. The dual-process model can also produce a linear
z-ROC, but when recollection contributes to memory perfor-
mance, it begins to produce a slightly U-shaped function.
Figure 2 shows the ROCs from Figure 1 replotted on
z-coordinates and shows that the z-transformed function
predicted by the dual-process model exhibits a very slight U
shape compared with the straight line predicted by the
unequal-variance model.

Glanzer, Kim, et al. (1999) examined the z-ROCs from the
four experiments they conducted, as well as from five
previously reported experiments from Glanzer and Adams
(1990). They found that in two of the experiments, the
z-ROCs were significantly U shaped, but in the remaining
experiments the functions did not deviate significantly from
linearity. In fact, the function in one of the experiments
appeared to show an inverted U shape (see Experiment 4
[GK4] in Table 5, p. 511, from Glanzer, Kim, et al., 1999).
Although the curvilinearity of the latter z-ROC was not
significant, when included with the other experiments it was
apparent that on average the z-ROCs were not U shaped.
Thus, on average, the ROCs are fit quite well by the
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Figure 2. Recognition memory ROCs plotted on z-coordinates.
The upper solid function represents the unequal-variance signal-
detection model (UVSD). The dashed line represents the dual-
process signal-detection model (DPSD), in which both recollection
(R) and familiarity (F) contribute to performance. The lower
function reflects familiarity alone, that is, an equal-variance
signal-detection model (EVSD). Note that the upper functions approx-
imate the average ROCs observed in Glanzer, Kim, et al. (1999).

unequal-variance signal-detection model, and this led Glan-
zer, Kim, et al. to conclude that the ROCs must contradict
the dual-process model.

Do these results contradict the dual-process model as
Glanzer, Kim, et al. (1999) propose, or do the results support
it? The results from the two experiments in which the
z-ROCs exhibited a significant U shape clearly support the
dual-process model and are problematic for the unequal-
variance model—these results show that the Gaussian
assumption underlying the unequal-variance model was
violated in these two experiments. Less clear are the results
from the remaining experiments. As Glanzer, Kim, et al.
concede, the results of these experiments amount to null
effects; they failed to find significant curvilinear components
associated with the z-ROCs. Besides the usual difficulties
associated with interpreting null effects, these findings are
particularly uninformative because in standard recognition
memory tasks, the dual-process model predicts ROCs that
are very similar to those of the unequal-variance model (e.g.,
see Figures 1 and 2). Thus, Glanzer, Kim, et al.’s failure to
find significantly U-shaped z-ROCs in some of their experi-
ments should not be surprising from the perspective of either
model. In sum, the results of the linearity analysis of the
z-ROCs are not problematic for the dual-process model.
Moreover, the significantly U-shaped z-ROCs observed in two
of the experiments contradict the unequal-variance model.

Glanzer, Kim, et al.’s (1999) Dual-Process
Regression Equation

As a second way of assessing the dual-process model,
Glanzer, Kim, et al. developed a new dual-process regres-
sion equation. They found that this new equation failed to
accurately account for the ROCs and argue that the original
dual-process model must also be inadequate. However, the
success or failure of their new equation must be interpreted
cautiously because the new equation is not equivalent to the
original model.

To derive the new equation, Glanzer, Kim, et al. (1999)
first generated a set of ROCs based on the dual-process
model by selecting parameter values for recollection ranging
from 0.1 to 0.8 and d’ parameter values ranging from 0.1 to
2.0. Having generated a set of theoretical ROCs, they plotted
them on z-coordinates and conducted a linearity analysis on
each function. They determined the slope and intercept of
the best fitting linear function and measured the curvilinear-
ity by introducing a quadratic component to the linear
function and determining its contribution. Finally, they
conducted a regression analysis on these three derived
measures to determine the average relationship between
slope, intercept, and curvilinearity. They argue that the
“regression equation tells us what the quadratic constant
should be, according to dual-process theory” (Glanzer, Kim,
et al., p. 511). Thus, on the basis of the finding that the
regression equation did not accurately capture the observed
relationship, they concluded that the original dual-process
model must also be inaccurate.

However, the regression equation is not identical to the
dual-process model, and thus testing the regression equation
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is not the same thing as testing the model. As an illustration,
I assessed the original dual-process model in the same way
that Glanzer, Kim, et al. (1999) assessed their new regres-
sion equation,! and found that the regression equation often
predicted a different curvilinear component than did the
dual-process model. For example, using the algorithm
described in the Appendix, the dual-process model was fit to
the average ROC in Experiment 2 (Glanzer, Kim, et al,,
1999), then the predicted z-ROC was assessed for curvilin-
earity, as described by Glanzer, Kim, et al. For that
experiment, Glanzer, Kim, et al.’s equation predicted a
quadratic component (.09) that was significantly greater than
the observed quadratic, #(29) = 2.85, p < .01. In contrast,
the dual-process model predicted a quadratic component
(.07) that did not differ significantly from the observed
quadratic, #(29) = 1.88, p > .05. Although the regression
equation overpredicted the expected curvilinearity by about
20% only, the example shows that the regression equation
can lead to predictions that differ from those of the
dual-process model. Note that I have examined a large
number of data sets and found that there are cases in which
the regression equation does make predictions that are very
close to that of the dual-process model. However, given that
the regression equation is not identical to the dual-process
model, direct tests of the original model would be more
informative than tests of the regression equation. Moreover,
as I show, when the dual-process model was directly fit to
the ROCs reported by Glanzer, Kim, et al., it became clear
that it provided an accurate account of their data.

Why did Glanzer, Kim, et al.’s (1999) regression equation
lead to different predictions than that of the dual-process
model? First, the regression equation attempts to capture the
predicted relationship between the slope, intercept, and
curvilinearity of the z-transformed ROCs. However, an
examination of the dual-process model showed that the
relationship among these three factors should not be as
simple as the regression equation suggests. That is, the
" dual-process model predicts that the degree of curvilinearity
will be dependent on the specific response criteria that the
participant adopts. For example, an examination of the
functions generated by the dual-process model showed that
the z-ROCs became more curvilinear as one moved to the
left of the function. Thus, the fit of the regression equation
might be improved if some measure of response criterion
were also included in the regression analysis. Second, the
regression equation was based on a specific set of theoretical
ROCs that the authors used as a basis for their regression
analysis. They derived the regression equation on the basis
of a sample of ROCs that included recollection estimates of
up to 80% correct and familiarity estimates for d' of up to
2.0. Such parameter values lead to recognition performance
that is almost perfect. An examination of the ROCs from
Glanzer, Kim, et al. (see Figure 3) showed that the ROCs
they observed did not come close to this level of perfor-
mance. If the theoretical ROCs were more representative of
the ROCs that actually were observed in their studies, then
their equation may have provided a better fit for the observed
data.

Directly Testing the Dual-Process and
Unequal-Variance Models

Glanzer, Kim, et al.’s (1999) ROCs

To assess directly how well the dual-process and unequal-
variance models accounted for the ROCs reported by
Glanzer, Kim, et al,, I simply fit the two models to the
observed ROCs. Figure 3 presents the average ROCs for the
four experiments reported by Glanzer, Kim, et al. (1999).
The solid line represents the fit of the unequal-variance
model and the dashed line represents the fit of the dual-
process model. Both models were regressed to the observed
data by reducing the sum of the squared differences along
the x- and y-dimensions (see Yonelinas, Dobbins, Szyman-
ski, Dhaliwal, & King, 1996). Note that a maximum
likelihood estimation method was also used, but because it
led to very similar fits, only the results of the regression
analyses are shown.

An examination of the ROCs in Figure 3 showed that the
two models produced very similar ROCs and that both
provided extremely accurate accounts of the data. On
average, the dual-process model accounted for 99.91% of
the variance, and the unequal-variance model accounted for
99.97%. These results converge with those of previous
studies in showing that the two models provided excellent
accounts of standard recognition ROCs. In fact, previous
attempts to discriminate between the two models have
shown that both models provide such good fits of the
recognition data that it is extremely difficult to differentiate
between them (see Yonelinas, 1994; Yonelinas et al., 1996).
For example, Yonelinas et al. (1996) compared the fits of the
two models for standard recognition ROCs and found that
although the dual-process model sometimes provided a
significantly better fit than the unequal-variance model, both
models accounted for more than 99.9% of the variance.
Because both models provided such good fits and one model
did not always provide a better fit than the other, suggests
that recognition ROCs do not prove very useful in contrast-
ing the two models.

Although both models provide a very good account of the
recognition ROCs, neither model is perfect. For example,
Glanzer, Kim, et al.’s (1999) analysis of the z-ROCs showed
that the ROCs sometimes deviated significantly from the
unequal-variance model. Moreover, a careful examination of
Figure 3 shows that the middle point in the ROC often sits
slightly above the ROCs predicted by both models (Ratcliff,
Van Zandt, & McKoon, 1995, reported a similar finding).

Why the ROCs sometimes differ from the predictions of
these two models is not entirely clear. However, Ratcliff,
McKoon, and Tindall (1994) have provided a potential
explanation. They found that in recognition memory tests,
some participants consistently exhibited U-shaped z-ROCs,
some participants exhibited linear z-ROCs, and some exhib-
ited inverted U-shaped z-ROCs. They then went on to show

171 thank Murray Glanzer, Kisok Kim, Andy Hilford, and John
Adams for providing the data from the four experiments in their
article.
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Figure 3. Recognition ROCs from Experiments (Exp) 1-4 (from Glanzer, Kim, et al., 1999), fit to
the unequal-variance and dual-process signal-detection models.

that noise could lead z-ROCs to exhibit an exaggerated
inverted U shape. That is, when as few as 5% of the
participants’ responses were random the observed z-ROC
would begin to exhibit an artifactual inverted U shape.
Given that hundreds of responses are collected from each
participant in most ROC experiments, it is likely that some
proportion of the responses do reflect noise. Thus, the
observed z-ROCs may sometimes exhibit a slightly more
inverted shape than our models would predict. For example,
the unequal-variance mode] produces linear z-ROCs, but if
noise is introduced to the model, it produces slightly
inverted U-shaped z-ROCs. Note, however, that noise would
not allow the unequal-variance model to account for the
observed U-shaped z-ROCs. In contrast, the dual-process
model can account for the U-shaped z-ROCs; adding a small
amount of noise could lead to linear z-ROCs, and adding
additional noise would be expected to produce inverted
U-shaped z-ROCs.

Although it is impossible to determine whether noise
contributed to the observed ROCs in the current studies,
future studies examining this issue will be useful in evaluat-
ing these models. If noise is found to play an important role
in the ROCs, then it may be necessary to incorporate
additional model parameters to reflect this. Given that both
of these models require only two memory parameters, it is
quite likely that additional parameters eventually will be
required.

Are there ways of testing the models further? Over the
past few years my colleagues and 1 have taken several
different approaches to address this issue. One strategy has
been to use the dual-process model to generate novel
predictions and conduct experiments to directly test those
predictions. A second strategy has been to directly contrast
the dual-process model with the unequal-variance model
under conditions in which they make different predictions.
The results of these two approaches are briefly described
below.

Predicting the Shape of the ROC

If the shape of the ROC is determined by the contribution
of recollection and familiarity, then it should be possible to
predict the shape of the function on the basis of estimates of
these two processes. Yonelinas (1994) showed that estimates
of recollection and familarity derived by using the process-
dissociation procedure (i.e., Jacoby, 1991) could be used to
accurately predict the slope and intercept of the z-ROCs.
Moreover, Yonelinas et al. (1996) showed that participants’
reports of remembering and knowing (i.e., Tulving, 1985)
also accurately predicted the shapes of the observed ROCs.
Prior to these studies, there was no way of predicting what
the shape of the ROC would be for a given experiment.
These results show that ROC data are closely related to the
results of the process-dissociation and remember—know



OBSERVATIONS 519

procedures, and they show that the processes underlying the
dual-process model are psychologically real in the sense that
they serve as a basis for intentional control and are available
to subjective experience.

Linear ROCs

A direct way to contrast the dual-process and unequal-
variance models is to examine ROCs under conditions in
which they predict substantially different ROCs. Although,
as I showed earlier, the two models predicted very similar
ROCs under standard recognition memory conditions, they
should diverge under conditions in which performance relies
primarily on recollection. Under these conditions, the dual-
process model predicts relatively linear ROCs that should
exhibit a noticeable U shape in z-space. In contrast, the
unequal-variance model predicts linear z-ROCs.

These predictions have been evaluated in tests of associa-
tive recognition in which participants studied pairs of items
and were then required to discriminate between previously
presented pairs and rearranged pairs. Because all of the
studied and rearranged pairs consisted of familiar items (i.e.,
they have been studied), familiarity should be less useful
than in tests of single-item recognition in which the lure
items are novel. If associative recognition relies primarily on
recollection, then the ROCs should be relatively linear.
Figure 4 presents the average ROC for associative recogni-
tion from Experiment 1 in Yonelinas (1997). The associative
ROC was relatively linear, and further analyses showed that
the function was significantly U shaped when plotted in
z-space. Similar results were found in two other experiments
in that study (see also Kelley & Wixted, 1997; Yonelinas,
Kroll, Dobbins, & Soltani, 1998). The results provide strong
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Figure 4. A linear recognition ROC observed for associative
recognition (from Experiment 1, Yonelinas, 1997) and a symmetri-
cal ROC for amnesics (from Yonelinas, Kroll, Dobbins, Lazzara, &
Knight, 1998).

support for the dual-process model and show that the
unequal-variance model is not consistent with the ROC data.

The dual-process model’s predictions were further veri-
fied in tests of source memory (Yonelinas, 1996), in which
participants had to discriminate between items that had
originated from two different sources (e.g., words spoken by
two different experimenters). Under test conditions in which
the familiarity of items from the two different sources did
not differ, the ROCs were relatively linear and exhibited a
significant U shape in z-space (Donaldson & Mackenzie,
1996, have also reported similar results). The results of the
associative and source recognition studies have provided
strong evidence that recollection is well described as a
threshold process. Moreover, given that the unequal-
variance model does not predict U shaped z-ROCs, the
results show that the unequal-variance model is inconsistent
with the data.

Symmetrical ROCs

One of the more appealing aspects of dual-process
theories of memory is that they are compatible with the
notion that different memory processes may be differentially
disrupted by brain injury. For example, early proponents of
dual-process theory (e.g., Huppert & Piercy, 1976; Mandler,
1980) argued that amnesics (i.e., patients with damage to the
medial temporal lobes) were no longer able to recollect
previous events, but they could make recognition memory
Jjudgments based on familiarity. If the current dual-process
model is correct and amnesics are making their recognition
judgments on the basis of familiarity alone, then their
recognition ROCs should be curvilinear and symmetrical, in
contrast to the asymmetrical functions observed in healthy
participants. This prediction was tested by examining recog-
nition memory for words in amnesics (Yonelinas, Kroll,
Dobbins, Lazzara, & Knight, 1998). In contrast to healthy
control participants who exhibited curved asymmetrical
recognition ROCs, the amnesics’ functions were curved and
symmetrical. The average ROC for the amnesics is pre-
sented in Figure 4. Similar results were also observed when
recognition memory for faces was tested (Dobbins, Yonelinas,
Kroll, Soltani, & Knight, 1998). The resuits provide support
for the claim that familiarity is well described as an
equal-variance signal-detection process and demonstrate
that the dual-process model is useful in understanding the
memory performance of healthy and memory-impaired
populations.

Conclusion

The results of Glanzer, Kim, et al. (1999) are important in
showing that recognition accuracy and ROC asymmetry can
dissociate. Their ROC results were found to be consistent
with two very simple recognition memory modeis: the
dual-process model and the unequal-variance signal-
detection model. Although neither model perfectly predicted
the ROCs, both of these models were found to account for
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over 99% of the observed variance in the average ROCs by
using only two free memory parameters. Hence, Glanzer,
Kim, et al.’s ROCs are not particularly problematic for either
model. However, an examination of a broader range of
recognition ROC data provided strong support in favor of
the dual-process model by showing that the predictions of
that model were verified and that the assumptions of the
unequal-variance model were violated under conditions
in which recollection played a large role in recognition
performance.

Glanzer, Kim, et al.’s (1999) results join a growing body
of research that uses ROC analysis to examine recognition
memory. Like the process-dissociation and remember—know
procedures, the ROC procedure provides much more con-
straining information than do traditional recognition mea-
sures. Taken together with the study of patients who have
brain damage, ROC results are providing important insights
into the processes that underlie recognition memory and are
playing an essential role in testing our theories of human
memory.
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Appendix

Fitting the Dual-Process Model

In the dual-process signal-detection model, recognition is assumed to
reflect the contribution of recollection and familiarity. It is assumed that an
old item will be correctly aceepted as old if it is recollected (R) or if it is not
recollected (1 — R) but is accepted on the basis of familiarity. Familiarity is
assumed to reflect a Gaussian equal-variance signal-detection process such
that the probability that an item is accepted on the basis of familiarity is a
function of sensitivity (d') and response criterion {¢). The probability that
the familiarity of an old item exceeds the response criterion is equal to ¢
(d'12 — ¢): the proportion of the old item distribution exceeding the
response criterion (¢). Thus, the probability of a hit can be written as
P(“yes”|old); = R + (1 — R)®[(d'/2) — ¢;]. The probability that a new
item will be incorrectly accepted as old will be equal to the probability that
the familiarity of the new item exceeds the response criterion, and this can
be written as P(“‘yes” |new), = &[(—d'/2) — c;]. These equations represent

performance at one point on the ROC. Continuously varying ¢ will produce
a continuous ROC. The equations can be fit to ROC:s in the following way.
An ROC with 5 points will have a set of 10 equations. Assuming that
memory (R and 4') remains constant across the ROC and only ¢; varies,
then the set of equations can be solved to derive estimates of R and d’. For
the current article, the solver in Excel 5.0 (1994) was used to find the best
fitting parameters for these equations by reducing the sum of squared errors
between the predicted and observed data (see Yonelinas, 1997).
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Postscript

Glanzer, Hilford, Kim, and Adams (1999) make two points in their
response to this article. First, because z-ROCs in many recognition
experiments are fit quite well by linear functions, they conclude that
recognition z-ROCs are linear in general. However, this is an oversimplifi-
cation. Indeed, other researchers (e.g., Ratcliff et al., 1994; Yonelinas, 1994)
have been concerned with the significant and systematic deviations from
linearity that are observed (e.g., U-shaped z-ROCs). Glanzer, Hilford, et al.
treat these deviations as tangential because these deviations are often
observed under conditions they consider to be unusual (e.g., when
participants are required to process the meaning of each word during the
study phase or when participants are required to determine in which of two
study lists, rather than one, an item was presented). But, even if one
excludes all of these studies, there are numerous other recognition
experiments, including Glanzer’s, in which significantly U-shaped z-ROCs
are observed (e.g., Glanzer & Adams, 1990; Glanzer, Kim, et al., 1999;
Ratcliff et al., 1994; Yonelinas et al., 1996). Limiting the range of
experiments examined, or considering only the average pattern, as Glanzer
et al. (Glanzer, Kim, et al, 1999; Glanzer, Hilford, et al., 1999) do,
simplifies the story, but at the cost of obscuring the theoretical implications
of the ROC data. A close examination of the data shows that recognition

memory models must be able to account for both linear and significantly
U-shaped z-ROCs.

Glanzer, Hilford, et al.’s (1999) second point is that in two of their
original experiments the dual-process model deviated significantly from the
observed data. As I discussed earlier in this article, this reflects the fact that
the middle points on the ROC were sometimes slightly higher than the
dual-process model and the unequal-variance model predicted. Glanzer,
Hilford, et al. argue that this means that the dual-process model is in need of
a “major revision” (p. 522). However, their conclusion is premature for two
reasons. First, the observed deviation was extremely small. For example, in
both of those experiments the model accounted for over 99.9% of the
observed variance, and at the very worst point on the function, the predicted
hit rate differed from the observed hit rate by only .01. Second, one must be
particularly cautious when interpreting this result because this type of
deviation can be created if even a small proportion of the participants’
confidence judgments are random (see my earlier discussion). Whether
random responding plays an important role in ROC experiments, or
whether better models can be developed, are important questions for future
studies. However, until then, it appears that we must be content with a
model that accounts for only 99.9% of the variance.



