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COMMENT

Response Bias and the Process-Dissociation Procedure

Andrew P. Yonelinas
University of California, Davis

Larry L. Jacoby
New York University

Two different approaches for treating response bias in the process-dissociation procedure
were assessed: a multinomial approach proposed by A. Buchner, E. Erdfelder, and B.
Vaterrodt-Pliinnecke (1995) and a dual-process, signal-detection approach proposed by A. P.
Yonelinas, G. Regehr, and L. L. Jacoby (1995). The authors examined data presented by
Buchner et al. and found that, although the signal-detection-based model worked slightly
better than the multinomial model, the data did not provide a strong test of either model.
However, an examination of other recognition data showed that the multinomial model
produced distorted estimates of recollection and familiarity, and it was unable to account for
observed receiver operating characteristics (ROCs). In contrast, the dual-process, signal-
detection model produced unbiased estimates and was able to account for the observed ROCs.
The authors also provide an overview of the general controversy surrounding the process-
dissociation approach.

Buchner, Erdfelder, and Vaterrodt-Pliinnecke (1995) pro-
posed a modification of the process-dissociation procedure
that incorporates response bias. We begin this article by
describing the process-dissociation procedure and then de-
scribe the multinomial model that Buchner et al. proposed,
contrasting their model with a dual-process, signal-
detection method that we (e.g., Yonelinas, 1994; Yonelinas,
Regehr, & Jacoby, 1995) have developed to take differences
in response bias into account. Next, we examine the data
that Buchner et al. used as evidence to support their model
and show that our model deals with those data slightly better
than does their model. We argue, however, that the manip-
ulations used in their experiments may have influenced both
response bias and recollection, and thus their data may not
provide a strong test of models. We assess the models
further by examining changes in response criterion associ-
ated with differences in response confidence and show that
the multinomial model, but not the dual-process, signal-
detection model, produces distorted estimates of recollec-
tion and familiarity. Finally, we examine receiver operating
characteristics (ROCs) and find that the model that under-
lies the multinomial approach is in conflict with the ROC
data. In contrast, we show that our signal-detection model
accounts well for observed ROCs. While considering mod-
els of response bias, we provide a "road map" for contro-
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versy surrounding the process-dissociation procedure, pro-
viding references to comments made by critics of the
approach and our answers to those critics.

Although the focus on differences between models em-
phasizes disagreement, we agree with Buchner et al. (1995)
on a number of fundamental issues. We agree that the
process-dissociation procedure is an advance as compared
to the use of direct and indirect tests to measure conscious
and unconscious memory processes. The problem for
relying on indirect and direct tests is that performance
on indirect tests does not reflect unconscious influences
of memory alone, but rather is contaminated sometimes
by conscious uses of memory (Holender, 1986; Toth,
Reingold, & Jacoby, 1994). Also, performance on direct
tests is sometimes contaminated by unconscious influences
(Jacoby, Toth, & Yonelinas, 1993). Buchner et al. and we
have agreed that the process-dissociation procedure pro-
vides a way of estimating conscious and unconscious influ-
ences within the same task and thus avoids the problems
associated with equating conscious and unconscious mem-
ory processes with performance on two different types of
memory test. We also agree that the original proposal of the
process-dissociation approach (Jacoby, 1991) acknowl-
edged but did not adequately deal with effects produced by
differences in response bias.

The goal of the process-dissociation approach is to sep-
arately estimate the contributions of consciously controlled
use of memory (recollection) and unconscious, automatic
use of memory (e.g., familiarity) to the performance of a
task. The problems produced by differences in response bias
are similar to those encountered by models of memory that
do not distinguish between recollection and familiarity but,
instead, are meant to separate memory and guessing. As will
be described, single-process memory models can be divided
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into those taking a multinomial approach and those using
signal-detection theory to account for differences in re-
sponse bias. The success of a model designed to take
differences in response bias into account is measured by the
invariance in its estimates of memory across levels of a
manipulation meant to selectively influence response bias.
Both the aim of using signal-detection theory and that of
using a multinomial model is to correct for differences in
response bias (guessing) so as to measure true recognition
memory. The measure of true recognition memory is ex-
pected to remain invariant across conditions that differ in
the extent to which they encourage guessing. Returning to
the process-dissociation approach, an adequate treatment of
response bias within that approach can show both estimates
of recollection and estimates of familiarity to be invariant
across manipulations of response bias.

Buchner et al. (1995) and we have agreed on the necessity
of a dual-process model of memory and that gaining true
measures of recollection and familiarity is of paramount
importance. However, we have disagreed in regard to ways
that we favor for dealing with complications produced by
differences in response bias. This disagreement is generally
unimportant for conclusions that we have drawn from prior
experiments using the process-dissociation procedure (e.g.,
Jacoby, Toth, & Yonelinas, 1993). Our interest has been in
showing that experimental manipulations and individual
differences can selectively influence recollection or famil-
iarity, rather than in the absolute magnitude of estimates of
recollection or familiarity. Because our main interest has not
been differences in response bias, we have designed our
experiments to avoid or minimize such differences. Buchner
et al. made an important contribution by using designs that
produce large differences in response bias and, so, force one
to deal with the complications of correcting for such differ-
ences when estimating the contributions of conscious and
unconscious uses of memory. Although it is important to
incorporate a model of response bias into the process-
dissociation procedure, we later argue that the best strategy
is to avoid differences in response bias, as we have done,
unless such differences are of focal interest.

The Process-Dissociation Procedure

Jacoby (1991) developed the process-dissociation proce-
dure to derive quantitative estimates for the contributions of
recollection and familiarity to recognition memory perfor-
mance. Estimates for recollection and familiarity were
gained by combining performance in an inclusion condition,
in which the two bases for recognition act in concert, with
performance in an exclusion condition, in which the bases
for recognition act in opposition. As will be described, the
use of these two test conditions to separate types of memory
is analogous to the use of hits and false alarms to separate
memory from guessing in a single-process model. Just as is
true for hits and false alarms, in concert and opposition
conditions can be gained in a variety of ways. As an
example of the process-dissociation procedure, consider its
first use by Jacoby (1991). In Phase 1 of that experiment,

participants read a list of words under incidental encoding
conditions. In Phase 2, participants heard a different list of
words and were instructed to remember those words for a
later recognition test. At test, participants were presented
with a list containing a mixture of words that were earlier
seen, words that were earlier heard, and new words and
were given either inclusion or exclusion instructions. In the
inclusion condition, they were instructed to call a word
"old" if it was in either the seen or heard list. In the
exclusion condition, they were instructed to call a word
"old" only if it was in the heard list. Further, they were told
that if they could recollect that the word was seen they could
be sure the word was not heard and thus should reject the
word. That is, participants were instructed to include seen
words in the inclusion condition and exclude those words in
the exclusion condition.

Performance in the inclusion and exclusion conditions for
the seen words was used to derive estimates of recollection
and familiarity. If the two processes are independent, the
probability of responding "yes" to a seen word in the
inclusion (i) condition can be written as

PO'yes'Yold); = F-RF, (1)

the probability that the item is recollected (/?) plus the
probability that it is familiar (F), minus the probability that
the item is recollected and familiar (RF). That is, a seen item
can be accepted as old if it is recollected as having been
seen or if it is sufficiently familiar to be judged old. The
probability of responding "yes" to a seen item in the exclu-
sion (e) condition can be written as

/J("yes"/old)e = F-RF, (2)

the probability that the item is familiar, minus the proba-
bility that it is familiar and recollected. That is, participants
will only accept a seen word if it is familiar but they cannot
recollect that it was seen. Recollection is calculated by
subtracting the exclusion score from the inclusion score, R
+ F- RF - (F - RF) = R. Having solved for R, either of
the two equations can be used to solve for familiarity; for
example, exclusion^ 1 - R) = F.

Buchner et al. (1995) used the terms conscious (C) and
unconscious (U), whereas we prefer to use the terms recol-
lection and familiarity as exemplars of the general catego-
ries of consciously controlled and unconscious, automatic
processes, relevant to recognition memory (Mandler, 1980).
More important, as described earlier, our use of the process-
dissociation procedure has typically been based on the as-
sumption that recollection and familiarity serve as indepen-
dent bases for recognition judgments. In contrast, Buchner
et al. have claimed that a merit of their modification of our
approach is that they avoid making an assumption about the
relationship between recollection and familiarity. To avoid
the independence assumption, they have estimated the con-
ditional probability that an item is familiar given that it was
not recollected in preference to the simple probability of
calling an item old on the basis of its familiarity.

A means of avoiding the independence assumption would
greatly simplify our lives. That assumption has been the
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most controversial assumption underlying the process-dis-
sociation approach. Earlier, we (Jacoby, 1991; Jacoby,
Toth, & Yonelinas, 1993) noted alternatives to an indepen-
dence relation between recollection and familiarity and ac-
knowledged that those alternative relations sometimes hold.
Later, Joordens and Merikle (1993) favored an assumption
of a redundancy relation, and we (Jacoby, Toth, Yonelinas,
& Debner, 1994) responded by defending the independence
assumption as providing the most reasonable fit for data
from our experimental situations. Rather than claim that
independence always holds, we have aimed the design of
our experiments at satisfying the assumption of indepen-
dence. Curran and Hintzman (1995) followed Jacoby (1991)
by noting that violation of the independence assumption can
bias estimates and claimed to show that, in our experiments,
we were unlikely to have satisfied the assumption of inde-
pendence (see Jacoby, Begg, & Toth, in press, for a re-
sponse).

Does reliance on the conditional probability of familiarity
given recollection failure allow one to avoid the indepen-
dence assumption? A cost of abstaining from an assumption
about the relationship between bases for recognition judg-
ments is that one can no longer estimate the contribution of
familiarity. Use of the conditional probability, without an
assumption about the relation between recollection and fa-
miliarity, does not allow one to show the selectivity of
influences on familiarity or recollection, which is our inter-
est. Only by assuming independence, does one have reason
to expect the conditional probability of familiarity given
recollection failure to remain invariant across manipulations
that influence the probability of recollection. This is because
with an assumption of independence, the conditional prob-
ability of familiarity given recollection failure is equal to the
simple probability of calling an item old on the basis of its
familiarity. The equivalence of the conditional probability
and the simple probability of familiarity given the indepen-
dence assumption means that consequences of violating
the independence assumption are the same for the two
probabilities.

Findings of selective influences in the form of dissocia-
tions provide support for the independence assumption. For
example, divided, as compared to full, attention to study
reduces recollection but leaves automatic influences invari-
ant in stem-cued recall, as do age-related differences in
recollection. There is substantial support for the indepen-
dence assumption as it relates to stem completion perfor-
mance (e.g., Cowan & Stadler, 1996; Jacoby, Yonelinas, &
Jennings, in press). More relevant, however, is the evidence
supporting the independence assumption in studies of rec-
ognition memory, which is the task discussed by Buchner
(see Jacoby, Jennings, et al., in press; Yonelinas, 1994;
Yonelinas & Jacoby, 1994; Yonelinas & Jacoby, 1995b;
Yonelinas & Jacoby, 1996). In the current discussion, we
assume that recollection and familiarity are independent and
use the terms to represent simple probabilities, rather than
use the mix of simple and conditional probabilities favored
by Buchner et al. (1995). However, the arguments made for
the simple probabilities hold as well for the conditional
probabilities, because, given the independence assumption,

the conditional probability used by Buchner et al. is iden-
tical to the simple probability F (see Buchner et al., p. 141).

The Multinomial-Based Model Proposed by
Buchner et al. (1995)

Buchner et al. (1995) propose a way of introducing re-
sponse bias into the process-dissociation procedure that is
based on a multinomial model (see Batchelder & Riefer,
1990). They argue that performance in the inclusion and
exclusion conditions reflects not only recollection and fa-
miliarity, but also a separate guessing process. The notion is
that when both recollection and familiarity fail, participants
may still accept items as old on the basis of a guess.
Guessing would increase the probability of accepting old
items as old, but would also lead participants to incorrectly
accept new items as old. This, of course, would account for
the fact that participants almost always accept some pro-
portion of new items as old (i.e., false alarms). Because the
probability of a guess may differ in the inclusion and
exclusion conditions, Buchner et al. have introduced differ-
ent guessing terms into the inclusion and exclusion equa-
tions (G; and Ge, respectively). They then used the false-
alarm rates under inclusion and exclusion conditions as
estimates of G; and Ge and algebraically removed guessing
from performance on the old items to provide a pure mea-
sure of recollection and familiarity. By their formulation,
the inclusion and exclusion equations can be written as

P("yes"/old)j = R)\F + (1 - F)G{] (3)

/>("yes"/old)e = (1 - R) [F + (1 - F)Gj, (4)

where

P("yes"/new)i = Gi (5)

P("yes"/new)e = Ge. (6)

By solving these equations one can derive estimates for R
andF.

The multinomial model that underlies this correction
method has been used in studies of source memory (see
Johnson, Hashtroudi, & Lindsay, 1993) and reflects a class
of models known as high-threshold models. After we assess
Buchner's model we discuss the use of high-threshold mod-
els in general.

The Dual-Process, Signal-Detection Model

An alternative method of incorporating response bias into
the process-dissociation procedure is to use a dual-process,
signal-detection model that was proposed in outline form by
Jacoby et al. (1993) and further developed by Yonelinas
(Yonelinas, 1994; Yonelinas et al. 1995). By that model,
recollection is probabilistic just as in the model proposed by
Buchner et al. (1995). However, familiarity is assumed to
reflect a signal-detection process (for a discussion of signal-
detection theory, see Macmillan & Creelman, 1991). The
idea is that new items are sometimes accepted as old on the
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basis of preexperimental familiarity. All items are assumed
to have some level of familiarity that can be described by a
normal distribution. Studying a list of items temporarily
increases the familiarity of those items, which has the effect
of shifting then- familiarity distribution. The participant sets
some criterion level of familiarity, and items exceeding that
level are accepted as old. Participants can vary their re-
sponse criterion on familiarity and thus increase or decrease
their hits and false alarms.

If familiarity is a signal-detection process, then the famil-
iarity term in the original process-dissociation equations can
be replaced by a function representing the probability that
an old item exceeds the response criterion: <I>(d72 - C).
This term represents the proportion of the old-item distri-
bution exceeding the criterion (C; see Macmillan &
Creelman, 1991). When this term is substituted into the
inclusion and exclusion equations we have

P("yes"/old)i = R + Q(d'l2 - Q) - R3>(d'l2 - Q) (7)

P("yes"/old)e = - Ce) - - Ce) . (8)

Of course, for a given value of C, there will be some
proportion of new items incorrectly accepted as old. The
false-alarm rate will be equal to the proportion of the
new-item distribution exceeding the criterion, and this can
be written as

PC'yes'Vnew); = <D(-d72 - C\) (9)

P("yes"/new)e = $(-d'/2 - Ce) . (10)

Thus, we have four equations (the probability of accept-
ing old and new items under inclusion and exclusion in-
structions) and four variables (R, d', C-v and Ce). We can
solve the equations to derive estimates for the four vari-
ables. However, because of the nature of the normal distri-
butions that underlie the signal-detection model, a simple
algebraic solution is not available. To solve for the un-
knowns, we used a gradient-descent search algorithm. How-
ever, another alternative is to assume logistic distributions,
in which case there is a closed-form solution (see Appendix
A). We discuss the logistic-based method in more detail in
a later section. However, in keeping with the assumptions of
signal-detection theory, the estimates presented in the cur-
rent paper were based on normal distributions.

Because familiarity is assumed to reflect a signal-
detection process, it is measured in terms of d' rather than
in terms of simple probabilities. The probability that an item
will be accepted on the basis of familiarity is not fixed, but
will vary with the response criterion. However, to facilitate
comparison to the multinomial correction method, we will
provide estimates of familiarity in terms of simple proba-
bilities by calculating the probability of accepting old items
based on familiarity given a specified false-alarm rate. The
signal-detection-based model and the multinomial model
are similar in that they both assume that recollection and
familiarity contribute to overall recognition performance.
Moreover, recollection is estimated in the same way by
the two models and is measured by both models as a

simple probability (i.e., the probability that an old item is
recollected).

The multinomial and dual-process, signal-detection mod-
els differ in several important ways. First, we have assumed
that familiarity is a signal-detection process, such that old
and new items that exceed the response criterion are ac-
cepted as old. In contrast, Buchner et al. assume that some
fixed proportion of old items are experienced as familiar (a
high-threshold model of the class described by Snodgrass &
Corwin, 1988). Buchner et al. (1995) assume that new items
are never accepted as old on the basis of familiarity. Rather,
false alarms arise because participants engage in a random
guessing process. The guessing process is assumed to op-
erate independently of the item's history (i.e., the probabil-
ity of guessing is the same for studied and nonstudied
items). Moreover, the guessing process is assumed to be
independent of recollection as well as familiarity. This
independence assumption is a consequence of the way
Buchner et al. introduced the guessing term into the equa-
tions expressing their model. Their independence assump-
tion can be appreciated by examining their Equations 3-6.
For example, if we represent the probability that an old item
is accepted on the basis of memory (i.e., recollection and
familiarity) as M, then their Equation 3 can be written as:
M + G — MG (which is the independence equation).

Assessing the Models

We compared our model with that proposed by Buchner
et al. (1995) in three ways: First, following Buchner et al.,
we examined how well the two models corrected for differ-
ences in response bias when bias was manipulated experi-
mentally. We did this by applying the multinomial and
signal-detection models to data from Buchner et al. Second,
we applied the models to a data set from Yonelinas (1994)
gained by requiring participants to make confidence judg-
ments in an inclusion-exclusion, recognition-memory ex-
periment. This data set allowed us to assess the models
when response criterion varied as a function of response
confidence. Third, the same data set was also used to
examine how well the models underlying the different
methods of incorporating response bias could account for
ROCs.

Experimental Manipulations of Response Bias

One way of assessing a model of response bias is to find
manipulations that selectively influence response bias and
examine the effect of these manipulations on estimates of R
and F. If the manipulations selectively influence response
bias and the model adequately accounts for bias, then esti-
mates of R and F should not be affected by those manipu-
lations. Buchner et al. (1995) examined three potential
response-bias manipulations. In Experiment 1, they varied
the proportion of items in the test lists that were new. In
Experiment 2, they varied the payoff schedule such that
participants were reinforced to respond "yes" or "no." In
Experiment 3, they either informed the participants of the
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objective probabilities that test items were old or they did
not. In all three experiments, the manipulations influenced
the participants' response bias, in the sense that they were
more likely to accept old and new items in one condition
than in another.

Buchner et al. (1995) found that estimates for both R and
F gained using the original process-dissociation procedure
were influenced by the response-bias manipulation. More-
over, the multinomial method led to estimates of R and F
that were less affected by the response-bias manipulations
than the original estimates. We examined data from their
experiments and contrasted estimates gained using the
multinomial method with those gained using the signal-
detection method. Both procedures were found to lead to a
modest decrease in response-bias effects. However, an ex-
amination of the results suggests that the experimental ma-
nipulations affected the recollection process as well as re-
sponse bias, and thus the experiments did not provide a
strong test of the models.

Table 1 shows the average estimates for strict and lax
response-bias conditions based on the original procedure
(Equations 1 and 2) and the multinomial (Equations 3 to 6)
and dual-process, signal-detection methods (Equations 7 to
10). Estimates were derived for each condition in each
experiment reported by Buchner et al. (1995). For simplic-
ity, estimates for R and F were then averaged across words
that were read and solved as anagrams in the study list and
across the three experiments. However, the raw scores for
all conditions as well as the parameter estimates are pre-
sented in Appendixes B and C, respectively. The strict
conditions were those referred to as the extended, conser-
vative, and standard conditions in Experiments 1 through 3
done by Buchner et al. Difference scores, across the re-
sponse-bias manipulation, for each correction method are
also presented. The difference scores reflect the effect of
response bias on estimates ofR and F. To the extent that the
models of response bias reduce this difference, they have
succeeded in accommodating the effect of the response-bias
manipulation.

Estimates are presented in terms of simple probabilities
for all three estimation methods. The signal-detection-based
method measures familiarity in terms of d'. However, in
order to facilitate comparison to the estimates from the other
methods the estimates were converted into probabilities by
determining the probability of accepting an old item on the
basis of familiarity (d') at the average false-alarm rate (.18).

An examination of Table 1 shows that the response-bias
manipulations did distort the estimates for R and F gained
from the original estimation method. The response-bias
manipulation led to a .07 difference in recollection and a .14
difference in familiarity. The influence of the response-bias
manipulations on the process estimates suggests that a
method of correcting for response bias is required. Did use
of the different models decrease the effects of the response-
bias manipulations? Table 1 shows that both models re-
duced the bias effect on familiarity but did not lead to a
sizable improvement in estimates of recollection. The effect
of bias (i.e., the difference score) on familiarity was reduced
from .14 with the original procedure to .08 with the multi-
nomial method. However, the signal-detection method led
to a slightly more substantial reduction, decreasing the
difference score to .02. In contrast, for recollection, neither
model reduced the difference scores (.07 for all three esti-
mation procedures), suggesting that neither correction
method was successful at eliminating the effects of the
response-bias manipulations on recollection.

Why were the estimates of recollection not greatly im-
proved by either correction method? One possibility is that
the bias manipulations used by Buchner et al. (1995) did not
selectively influence response bias but, rather, also influ-
enced recollection. That is, all three estimation procedures
may have been correct in showing that the response-bias
manipulations had real effects on recollection. For example,
in Experiment 1, increasing the proportion of old items in
the test list may have increased the probability that partic-
ipants engaged in the recollection process. In the sense that
recollection is a controlled memory process (Jacoby, 1991),
it is likely that a participant's retrieval strategies are influ-
enced by the proportion of trials on which the process has
been successful in the past. In agreement with this possi-
bility, Jacoby, Kelley, Brown, and Jasechko (1989) found
that in a fame judgment task, participants were less likely to
say "famous" to a studied nonfamous name when many of
the tested names were studied, suggesting that participants
were more likely to try to recollect items from the study list
when many of the tested items were from that list. With the
current data sets, there is no direct way of determining if the
bias manipulations did influence recollection. Thus, without
further experiments to determine the effects of the response-
bias manipulations on recollection and familiarity, it is
impossible to draw strong conclusions about the validity of
the different models.

Table 1
Average Estimates for Recollection (R) and Familiarity (F) Under Lax and Strict
Response Bias Conditions From Buchner et al. (1995), Based on the Original,
Multinomial, and Dual-Process, Signal-Detection (DPSD) Estimation Procedures

Estimation procedure

Original Multinomial DPSD

Lax Strict Mean Lax Strict Mean Lax Strict Mean
Parameter (M) (M) difference (M) (M) difference (M) (M) difference

R
F

.63

.50
.56
.36

.07

.14
.57
.36

.50

.28
.07
.08

.43

.49
.36
.51

.07

.02
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In summary, an examination of Buchner et al. (1995)'s
data showed that, for estimates of familiarity, both correc-
tion procedures reduced the effects of the bias manipula-
tions, but the signal-detection method led to a more com-
plete reduction in bias effects. However, for estimates of
recollection, neither correction method provided a sizable
reduction in bias effects. This may have been due to the fact
that the manipulations influenced recollection as well as
response bias.

Differences in Response Confidence

In this section, we describe the effect of varying response
criterion, observed by examining performance at different
levels of response confidence. Confidence-judgment data
have been used quite extensively to test models of recog-
nition memory over the past 20 years (e.g., Murdock, 1974;
Ratcliff et al., 1992). Presumably, different levels of re-
sponse confidence reflect differences in response criterion.
That is, high-confidence responses reflect a strict response
criterion, whereas lower levels of response confidence re-
flect a more lax response criterion. This procedure provides
a useful test of the correction methods because it does not
rely on examining performance across experimental manip-
ulations that might influence recollection.

We examined data from a recent series of experiments in
which the process-dissociation procedure was used to esti-
mate the contribution of recollection and familiarity as a
function of response confidence (Yonelinas, 1994, Experi-
ment 1). We begin by using data from that experiment to
examine how well the two different models of response bias
correct for differences in response bias between inclusion
and exclusion conditions. In the next section we examine
the ROCs from that study in more detail and contrast them
with the ROCs predicted by the models underlying the two
different correction procedures.

Participants rated the confidence of their recognition
memory judgments in a process-dissociation experiment.
They made their recognition judgments on a 6-point confi-
dence scale from sure yes (6) to sure no (1). The data
allowed us to examine inclusion and exclusion performance
in the same experiment at different levels of response con-
fidence and, thus, at different base rates. We examined
estimates for R and F when the base rates for the inclusion
and exclusion conditions were equivalent, as well as when
the base rates differed. If the correction methods do correct
for response bias, then differences in base rate should not
influence estimates of R and F. That is, estimates gained
using scores for which the base rates were the same should
not differ from those for which base rates differed.

Table 2 presents inclusion and exclusion performance
under strict response criterion conditions; we included only
the most confident inclusion and exclusion judgments (5s
and 6s). Also presented is performance under more lax
conditions; we included 3, 4, 5, and 6 responses. As ex-
pected, the false-alarm rate was considerably higher under
lax (.38) than strict conditions (.05).

Estimates for R and F were derived using the same

response-bias conditions (strict for both inclusion and ex-
clusion) and different response-bias conditions (lax for
inclusion and strict for exclusion; see Table 3). Looking first
at the estimates derived using the original process-
dissociation procedure (Table 3), we see that both R and F
are much greater when scores from different levels of re-
sponse confidence are used compared to when scores from
the same level of response confidence are used. Of course,
this is not surprising because the inclusion score was greater
in the lax condition than in the initial condition. Increasing
the inclusion score inflates R because R is calculated as the
difference between inclusion and exclusion scores. Increas-
ing the inclusion score also inflates estimates of familiarity
because familiarity is calculated by dividing the exclusion
score by (I-/?). Consequently, when base rates differ greatly
between inclusion and exclusion conditions, the original
estimation method cannot be relied on to produce valid
estimates of R and F.

Using the multinomial model, the differences in estimates
between same and different criterion conditions were
slightly reduced. However, the estimates for both R and F
were still inflated compared to the estimates gained using
that procedure when the base rates were the same. The
difference scores for R and F were .23 and .15 for recol-
lection and familiarity respectively, showing that the multi-
nomial model led to distorted estimates of recollection and
familiarity. In contrast, the signal-detection-based correc-
tion method was not affected by differences in response
bias; neither estimates of R nor F differed across the same
and different response-bias conditions. Why the two models
differed in their ability to correct for effects of response bias
will become apparent in the next section.

Examination of the Yonelinas's (1994) data showed that
differences in base rate between inclusion and exclusion
conditions can lead to dramatically distorted estimates of R
and F when using the original procedure. The multinomial
correction did lead to a slight reduction in the effects of
response bias but left estimates of both R and F greatly
inflated. In contrast, the signal-detection method was suc-
cessful in removing effects of response bias.

ROC Analysis

A shortcoming of the above analyses is that performance
was examined only at two different levels of response
criterion (strict and lax) in any one experiment. A much

Table 2
Proportion of Items Accepted From Long Lists in
Experiment 1 (Yonelinas, 1994) Using Strict and Lax
Response Criteria

Response criterion

Strict Lax
Test

condition

Inclusion
Exclusion

Old

.53

.15

New

.05

.05

Old

.84

.46

New

.38

.38
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Table 3
Estimates for Recollection (R) and Familiarity (F) Using Inclusion and Exclusion Scores From Same and Different
Levels of Response Confidence for the Original, Multinomial, and DPSD Estimation Methods

Estimation procedure

Parameter

R
F

Same

.38

.24

Original

Different

.69

.48

Multinomial

Mean
difference

.31

.24

Same

.38

.20

Different

.61

.35

Mean
difference

.23

.15

Same

.38

.24

DPSD

Different

.38

.24

Mean
difference

.00

.00
Note. DPSD = dual-process, signal-detection.

more powerful means of testing the models is to examine
performance at several different levels of response criterion
in the same experiment. An ROC analysis provides just such
a test, and, as we will see, it illustrates why the multinomial
correction model leads to distorted estimates of R and F.

An ROC is the function that relates the proportion of hits
to the proportion of false alarms. In the experiment just
described, participants made their responses on a 6-point
confidence scale. We can examine the ROC from that
experiment by plotting performance at each level of re-
sponse confidence. In Figure 1, the ROC was plotted such
that the first point includes only the most confidently re-
membered items (i.e., items eliciting a response of 6). The
second point includes all of the most confident responses
plus the second most confident responses (i.e., items elicit-
ing a response of 6 or 5, etc.) so that the 6-point response
scale produces a function with 5 points.

The inclusion function begins at .35 on the y-axis and
gradually increases in a curvilinear fashion toward the upper
right corner of the graph. As is the case with most recog-
nition ROCs, the function is curvilinear and is not symmet-
rical along the negative diagonal (e.g., Ratcliff, Sheu, &
Gronlund, 1992). The ROCs predicted by the multinomial
and signal-detection models are also presented in Figure 1.
The predicted curves were generated by fitting the models
to the lax inclusion score in the previous section; this is the
second-most right point on the observed function.

How did the predicted and observed ROCs compare?
Examination of Figure 1 shows that the model underlying
the multinomial correction method provides a very poor fit
to the observed ROC. In contrast to the observed data, it
predicts a linear (straight line) ROC. Because the inclusion
and exclusion equations are linear, increases in the false-
alarm rate are accompanied by proportional increases in the
hit rate, leading to straight-line ROCs.

One might argue that the curvilinear relationship between
hits and false alarms may only be observed in confidence
judgments under inclusion instructions and that the multi-
nomial model might fare better under different test condi-
tions. However, the curvilinearity that is so problematic for
the model is very general. For example, curvilinear ROCs
are always observed in standard studies of recognition
memory (e.g., Donaldson & Murdock, 1968; Gehring,
Toglia, & Kimble, 1976; Glanzer & Adams, 1990; Ratcliff
et al., 1992). Moreover, curvilinear ROCs are found when

response criterion is manipulated by varying the proportion
of old items in the test list (e.g., Ratcliff et al., 1992), a
manipulation like that used in Experiment 1 in the Buchner
et al. (1995) study. Thus, the nonlinear relationship that is
observed between hits and false alarms is quite general in
studies of recognition memory and is not limited to
inclusion-exclusion confidence judgments.

We are not the first to argue that the curvilinear recogni-
tion ROCs are problematic for threshold models. The ob-
served nonlinearity of ROCs was one of the primary reasons
why threshold models of recognition were initially rejected
as viable models for simple recognition judgments (see
Murdock, 1974). Moreover, Kinchla (1994) has recently
shown that these ROCs are in conflict with the multinomial
models used in studies of source memory.

In contrast to the multinomial model, the dual-process,
signal-detection model accounted well for the ROCs, with
the observed data points falling very close to the predicted
function. In agreement with the data, the model predicts a
curvilinear function. The reason the dual-process, signal-
detection correction method predicts such a function is that
the normal distributions that underlie the familiarity com-

1.0

0.8

I 0.6

I
0.4'

[

0.2-

0.0

DPSD
Multinomial

° Observed

0.0 0.2 0.4 0.6
"yes'Vnew

0.8 1.0

Figure 1. The observed recognition receiver operating charac-
teristics (ROCs) from Yonelinas (1994), along with the ROCs
predicted by the dual-process, signal detection model (DPSD) and
the multinomial model.
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ponent lead to nonlinear increases in the probability of
accepting old and new items.

Although an informal examination of Figure 1 is suffi-
cient to show that the multinomial model does not provide
a satisfactory account of recognition data, we contrasted the
fits of the models by calculated R2 measures. The R2 values
for the signal-detection and multinomial models were .997
and .773, respectively, showing that the signal-detection
model accounted for appreciably more variance than the
multinomial model. Although a direct statistical test of the
models is made difficult because of their different underly-
ing assumptions, the R2 measures are informative, because
the two models contain a similar number of free parameters.
The dual-process model fits the observed function in Figure
1 with two free parameters (R and d'). The multinomial
model also fits the ROC with two free parameters (R and F).
The multinomial model could be simplified to contain only
one free parameter (Af), but it would no longer be a dual-
process model and would be of little use for interpreting
inclusion-exclusion data. We have conducted similar anal-
ysis on numerous recognition and inclusion ROCs, and the
signal-detection-based model always provides a sizable im-
provement over the multinomial model.

Although the signal-detection model does provide a rea-
sonable fit to the recognition data, observed ROCs tend to
deviate slightly from the predicted curves at the extreme
levels of response confidence. For example, the left-most
point on the inclusion function tends to be slightly lower
than the model predicts (for further discussion of the devi-
ations from the model, see Yonelinas et al., 1995). Such a
deviation from the model might arise if participants falsely
recollect that items were in a study list. False recollection
could be problematic because neither the signal-detection-
based model nor the multinomial model assume that false
recollection occurs. That the dual-process model fit the data
reasonably well suggests that false recollection was not a
major problem. However, we believe that further assess-
ments of the model must address this possibility. In any
case, the deviation from the predicted curve was relatively
minor and was limited to the extreme levels of response
confidence. Our experience is that cases for which a cor-
rection method is required do not involve such extremes but
rather fall in the middle of the function where the model fits
the data quite well.

The ROC analysis showed that the multinomial model
was not able to account for the curvilinear form of the
observed ROC and provided a very poor fit of the data
observed under inclusion conditions. Because the linear
model underlying the correction method is not in agreement
with recognition performance, it does not provide an appro-
priate method of incorporating response bias into the pro-
cess-dissociation procedure. This explains why the multi-
nomial correction method led to the distorted estimates for
both recollection and familiarity described in the previous
section. We should note that Wainwright and Reingold (in
press) describe additional problems for the multinomial
approach proposed by Buchner et al. (1995). The dual-
process, signal-detection model, in contrast, provided a
good fit to the observed ROC data and thus seems to

provide a reasonable method for incorporating response bias
into the process-dissociation procedure.

Correcting for Response Bias in Memory Tasks
Other Than Recognition

The process-dissociation procedure has been applied to
numerous tasks other than recognition memory. We are
currently examining the application of the dual-process,
signal-detection model to stem completion performance.
However, the application of the model in that domain is
considerably more complex, and in some cases it may not be
appropriate. ROC analysis of stem-completion performance
is made difficult because, unlike recognition, participants do
not have to respond to all items. In fact, the task relies on
participants failing to respond correctly to many of the test
items. Because of this, we cannot derive ROCs in the way
we did for recognition performance and thus cannot easily
assess the correction methods. However, some preliminary
examinations of stem-completion performance show that
the ROCs are not linear and likely involve some form of
nonlinear signal-detection process. Another problem for
applying correction procedures to stem-completion perfor-
mance is that differences in base rate may arise for reasons
different than a shift in response criterion. For example,
base-rate differences arise when participants use different
retrieval strategies for the inclusion and exclusion test con-
ditions, as when they adopt a generate-recognize strategy
(see Jacoby et al., 1993).

One domain in which the dual-process, signal-detection
model may be useful is in studies of source memory. In a
typical source-memory experiment, participants study items
from two different sources. They are then given a recogni-
tion test for which they must first distinguish old items from
new distracter items and then are asked to judge the source
of recognized items. Batchelder and Riefer (1990) proposed
several multinomial models that have been used extensively
in studies of source monitoring. A problem for these theo-
ries of source monitoring is that they cannot account for the
observed curvilinear recognition ROCs. Kinchla (1994)
showed that ROCs generated by these multinomial models
were not in agreement with a large body of data on recog-
nition memory (however, see Batchelder, Riefer, & Hu,
1994). The difficulty is that the multinomial models are
high-threshold models, like the model proposed by Buchner
et al. and thus predict linear ROCs rather than the curvilin-
ear ROCs like those observed. Performance in standard
source-memory tasks may be understood using the dual-
process, signal-detection model (Yonelinas, 1996). By that
model, initial recognition judgments are based on a mixture
of recollection and familiarity, but source judgments rely
primarily on recollection. If familiarity reflects a signal-
detection process that is independent of a recollection pro-
cess, then one would expect to see the type of curvilinear
ROCs that are so problematic for current source-memory
models.
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Alternative Correction Methods

Here, we contrasted Buchner et al. (1995)'s multinomial
model with the dual-process, signal-detection model. There
are, of course, numerous other ways in which differences
in base rates could be incorporated into the process-
dissociation procedure. We have examined several alterna-
tive methods and briefly describe some of those methods in
the following text (for a more complete discussion of those
alternative methods, see Yonelinas et al., 1995).

There are several other high-threshold correction methods
that, like the multinomial method proposed by Buchner et
al. (1995) assume that there is a separate guessing process
that contributes to memory performance. That is, guessing
terms can be added to the inclusion and exclusion equations
in numerous ways. The problem with most of these methods
is that the underlying models predict linear ROCs. For
example, it is possible to expand the model proposed by
Buchner et al. into a 2-high-threshold model by introducing
an additional recollection parameter. Doing so would allow
the model to vary the slope of the predicted ROC line. This
would slightly improve the fit of the model to the observed
data; however, an examination of Figure 1 shows that there
is no straight line that provides a satisfactory fit for the
entire curve.

There are more complex threshold-based models that can
predict curvilinear ROCs (see Swets, 1986), and it is pos-
sible that these models can be adapted to the process-
dissociation procedure. However, a problem that we have
encountered when examining these models is that the num-
ber of free parameters often outnumbers the available data
points. For example, in typical inclusion-exclusion exper-
iments, one is limited to an inclusion and exclusion score for
old and new items. The dual-process, signal-detection
model is useful because the memory parameters (R and d'),
and the two bias parameters (C\ and Ce) can be estimated on
the basis of the four observed scores. However, models
containing more parameters are of little use in these con-
texts because they are underdetermined.

There are a number of alternative ways in which signal-
detection theory can be incorporated with the process-
dissociation procedure. For example, one could apply sig-
nal-detection theory separately to both familiarity and rec-
ollection. That is, the two processes could be treated as
separate dimensions in a multidimensional signal-detection
model (see Macmillan & Creelman, 1991). In this way, both
familiarity and recollection would be treated as continuous
processes. Although this approach may be useful in some
applications of the process-dissociation procedure, it seems
unnecessary in tests of recognition memory. The reason is
that recollection seems to be well described as a threshold
process. For example, the recognition ROC intersects the
y-axis at a point close to the estimate for recollection. That
is, recollection led to very high confidence-recognition re-
sponses, and the false-alarm rate for the highest confidence
responses was zero. Moreover, unlike familiarity, which
increased in a continuous manner as response criterion was
relaxed, estimates of recollection remained relatively con-
stant. Such results are expected if recollection is a threshold
process. However, we should note that although recollection

was well described as a fixed probability under the condi-
tions examined in the current experiments, there may be
conditions under which both processes behave in a contin-
uous manner. We are currently exploring other tasks, using
the process-dissociation procedure, for which a multidimen-
sional signal-detection model may be appropriate.

Another alternative, mentioned earlier, is to use the dual-
process, signal-detection method but to assume logistic
rather that normal distributions for familiarity. An advan-
tage of doing this is that the logistic function allows for
closed-form solutions (see Appendix A). Thus, estimates of
./? and F can be attained with a few simple calculations
rather than using a search algorithm as is required when
assuming normal distributions. The logistic distributions
provide a very close approximation to the normal distribu-
tions, and Snodgrass and Corwin (1988) have shown that
the two distributions produce equivalent results when ap-
plied to a wide variety of recognition data. Moreover, for
the current data sets, we found that the estimates based on
the logistic distributions were very close to those derived
using the normal distributions. Thus, the logistic-based,
dual-process, signal-detection model seems to provide a
relatively simple way of incorporating response bias into the
process-dissociation procedure.

Avoiding Problems by Design

The model of response bias that is chosen makes little
difference so long as conditions of interest do not differ in
false alarms and one's interest is in the pattern, rather
than the absolute magnitude, of differences (Snodgrass &
Corwin, 1988). Generally, the design of our experiments has
been aimed at avoiding differences among conditions in
response bias because our interest has been to separate the
contributions of consciously controlled and automatic pro-
cesses. Our experiments have also been designed to avoid
complexities that can arise from violating assumptions un-
derlying the process-dissociation procedure. In this final
section, we describe outcomes that make it necessary to
correct for differences in response bias and then consider
advantages of avoiding complexity by design. We end by
justifying this strategy in the context of the goal of the
process-dissociation approach.

If base rates do not differ across conditions, then a choice
among models of response bias is not necessary, and the
original inclusion-exclusion equations can be used to ob-
tain estimates—introducing either the multinomial or the
signal-detection theory correction procedure would not
change the pattern of results. However, estimates of famil-
iarity include both experimental and base-rate familiarity. If
base rates differ between inclusion and exclusion condi-
tions, then it is necessary to adopt a model of response bias
to obtain true estimates of recollection and familiarity. In
contrast, if base rates differ across some experimental vari-
able, but not across inclusion-exclusion tests, only esti-
mates of familiarity will be influenced. To compare esti-
mates of familiarity, it is necessary to convert the measures
of familiarity into a measure of sensitivity that is indepen-
dent of base rate (e.g., a d' value). To do this, one can use
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the false-alarm rate along with the familiarity estimate (as
the hit rate) and use d' reference tables to determine the d'
value. With familiarity measured in terms of d', we can
compare familiarity estimates independently of the false-
alarm rate.

Buchner et al. (1995) varied inclusion versus exclusion
tests among participants and observed large differences in
base rates. In contrast, we think it best to manipulate the
type of test within participants. Doing so makes it more
likely that base-rate differences will be avoided, or at least
minimized, and has the additional advantage of allowing
one to compute estimates for each participant, which is
important for purposes of analyses. Results reported by
Dodson and Johnson (1996) illustrate pitfalls of manipulat-
ing the type of test between participants and relying on false
alarms to correct for differences in response bias. To ana-
lyze their results, the inability to gain estimates for each
participant led them to rely on a "macrosubjects" procedure
that is analogous to randomly pairing hit rates and false-
alarm rates produced by different participants to estimate d'
and response bias. This approach was made even more
problematic by findings of large differences in base rates
that seem unexplainable. Correction for those supposed
differences in response bias was largely responsible for
creating the effects of manipulations on R and F that they
treat as important.

Graf and Komatsu (1994) followed Jacoby (1991) by
noting the assumptions underlying the process-dissociation
procedure along with the consequences of violating those
assumptions. One concern voiced by Graf and Komatsu is
that participants may not understand instructions for an
exclusion test (also see Curran & Hintzman, 1995). How-
ever, Toth, Reingold, and Jacoby (1995) noted that later
experiments using the process-dissociation procedure have
included ways to check the understanding of instructions.
Another concern is that, contrary to an assumption under-
lying the process-dissociation procedure, recollection may
not be equal for inclusion and exclusion tests. There is good
reason to worry about such an inequality when using the
particular procedure used by Jacoby (1991) and adopted by
Buchner et al. (1995) and by Dodson and Johnson (1996).
Later studies were designed to equate the processing de-
mands of the inclusion and exclusion conditions (see
Yonelinas, 1994; Yonelinas & Jacoby, 1994). Moreover, for
more recent experiments (e.g., Yonelinas & Jacoby, 1995a;
Hay & Jacoby, 1996), we have modified the procedure in
ways meant to insure the equality of/? across in-concert (cf.,
inclusion) and opposition (cf., exclusion) conditions. The
later procedures have the additional advantage of insuring
that response bias cannot be differential across conditions,
comparable to inclusion-exclusion tests, used to estimate
controlled and automatic influences, making it unnecessary
to correct for differences in response bias. Yet another
reason for concern is that recollection may be only partial,
and partial recollection might distort estimates of F.
Yonelinas and Jacoby (1996) consider potential problems
produced by partial recollection and provide evidence to
suggest that the problems are not serious ones, particularly

when the design of experiments is aimed at avoiding those
problems.

Ratcliff, Van Zandt, and McKoon (1995) unfavorably
compared the process-dissociation approach to more com-
plete models of memory such as search of associative mem-
ory (SAM; Gillund & Shiffrin, 1984). What is overlooked in
that comparison is the difference in goal between our ap-
proach and the more traditional approach. Although we
appreciate the value of more complete models of memory,
we center on separating consciously controlled and auto-
matic processes. This is because a goal that is important to
us is the very applied one of developing better means of
diagnosing and treating different deficits of memory (e.g.,
Jacoby, Jennings, & Hay, in press). In pursuit of that goal,
we aim for a simple model that highlights the differences
that are of most interest and design procedures in ways
meant to satisfy the assumptions of that simple model.

Summary

An examination of data from Buchner et al. (1995)
showed that the multinomial method of incorporating re-
sponse bias into the process-dissociation procedure led to a
modest reduction of the effects of the bias manipulations
on estimates of familiarity, but the dual-process, signal-
detection method led to a more complete reduction in bias
effects. However, both methods showed that the bias ma-
nipulations influenced recollection, suggesting that the ma-
nipulations may not have selectively influenced response
bias and thus may not have provided a very strong test of the
correction methods. When the correction methods were
applied to confidence-rating data, the signal-detection-
based method corrected for differences in response bias, but
the multinomial method led to distorted estimates of recol-
lection and familiarity. An ROC analysis showed that the
model underlying the multinomial method was inappropri-
ate for the process-dissociation procedure in recognition
memory because it predicted linear ROCs. The dual-pro-
cess, signal-detection model, on the other hand, fit the ROC
data very well and thus provided a reasonable method for
incorporating response bias into the process-dissociation
procedure.
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Appendix A

A Logistic-Based Dual Process Model

433

Equations for calculating R and F (a) based on the dual-process,
signal-detection method assuming logistic distributions for famil-
iarity:

R = -(O. - O, - 1)12 - {(0, - O, - I)2 - 4[0,(1 - Oe) - Oe

a = ln[(0i - R)(l - A?i)/JVi(l - OJ] =

-R- Oe)]

where Oj = the probability of accepting an old item in the
inclusion condition; Oe = the probability of accepting an old item
in the exclusion condition; N^ = the probability of accepting a new
item in the inclusion condition; Ne = the probability of accepting
a new item in the exclusion condition.

The probability of accepting an item on the basis of familiarity
given a false-alarm rate of x is (xe°)/(l + xe" - x).

Note that e in the proceeding equation refers to the base of the
natural logarithm.

Appendix B

Inclusion and Exclusion Performance From Buchner et al. (1995) for Each
Condition in Each Experiment

Item type

Read

Test
condition

Inclusion
Exclusion

Inclusion
Exclusion

Inclusion
Exclusion

Lax

Old

.712

.192

.752

.278

.730

.185

New

Strict

Old

Experiment 1

.302 .595

.082 .178

Experiment 2

.355 .690

.152 .175

Experiment 3

.342 .582

.052 .265

New

Lax

Old

(standard vs. extended)

.248 .885

.050 .082

(liberal vs.

.252

.032

(instructed

.165

.080

conservative)

.925

.172

vs. standard)

.860

.148

Anagram

Strict

New

.302

.082

.355

.152

.342

.052

Old

.822

.088

.850

.075

.782

.180

New

.248

.050

.252

.032

.165

.080

(Appendix C follows on next page)
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Appendix C

Parameter Estimates for the Data From Buchner et al. (1995), Based on the
Original, Multinomial, and the Dual-Process, Signal-Detection (DPSD)

Estimation Methods

Item type

Read

Method

Original

Multinomial

DPSD

Original

Multinomial

DPSD

Original

Multinomial

DPSD

Parameter

Experiment 1

R
F
R
F
R
F

Experiment 2

R
F
R
F
R
F

Experiment 3

R
F
R
F
R
F

Lax Strict

Anagram

Lax Strict

(standard vs. extended)

.52

.40

.43

.28

.28

.43

(liberal vs.

.47

.53

.40

.36

.29

.47

(instructed

.55

.41

.43

.29

.17

.45

.42

.31

.31

.22

.10

.44

conservative)

.52

.36

.42

.28

.14

.57

vs. standard)

.32

.39

.27

.31

.18

.49

.80

.42

.77

.29

.70

.44

.75

.70

.73

.57

.68

.61

.71

.51

.65

.39

.47

.52

.73

.33

.69

.24

.59

.46

.78

.33

.73

.25

.60

.56

.60

.45

.58

.38

.52

.54
Note. R = probability that the item is recollected; F = probability that the item is accepted as
familiar.
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