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We examined several different methods for incorporating response bias into a dual-process the-
ory of recognition memory. Two high threshold correction methods, which have previously been
applied to the process dissociation procedure, and a new, dual-process signal-detection method,
were assessed. An examination of receiver operating characteristics (ROCs) showed that the
threshold methods were inappropriate, but that the signal-detection method provided a reason-
able account of the observed ROCs. Applying the corrections to a second data set showed that
the different correction methods led to dramatically different conclusions, demonstrating that se-
lecting the correct correction method is critical. Moreover, in agreement with the ROC analysis,

the signal-detection method was the only one to provide a reasonable account of the data.
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Dual-process theories of memory postulate
that there are two qualitatively different pro-
cesses or systems that support memory judg-
ments. Evidence in support of these theories
comes from observed dissociations between
performance on indirect and direct tests of
memory (for reviews see Richardson-Klavehn,
& Bjork, 1988; Roediger & McDermott, 1993)
and from dissociative effects on the processes
that underlie recognition memory (e.g., Atkin-
son & Juola, 1974; Jacoby, 1991; Gardiner &
Java, 1993; Mandler, 1980; Piercy & Huppert,
1972; Verfaellie & Treadwell, 1993; Yoneli-
nas, 1994; Yonelinas & Jacoby, 1994). A ques-
tion that arises when considering dual-process
theories is how to incorporate response bias or
guessing into such models. Differences in the
response bias between different tasks make the
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interpretation of task dissociations difficult
(Reingold & Merikle, 1991). Further, as we
will show, the same differences also present
problems for procedures designed to estimate
the contribution of the underlying processes.
Although numerous correction methods have
been developed for single-factor models of
recognition (see Murdock, 1974), there has
been little discussion of these techniques with-
in the framework of a dual-process theory.

In this paper, we begin by discussing the
process dissociation procedure (Jacoby, 1991)
which aims at estimating the contribution of
recollection and familiarity to overall memory
performance. We then examine several differ-
ent methods that have been applied to that pro-
cedure to account for response bias. We first as-
sess the different methods by examining the
models that underlie each method and by con-
trasting the receiver operating characteristics
(ROCs) predicted by the models against those
observed in experimental data. We then assess
the procedures further by applying them to a
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data set for which sizable response bias prob-
lems exist. The application of the correction
procedures to that data set shows that distin-
guishing among these methods is critical be-
cause the different methods lead to dramati-
cally different conclusions. The results of those
analyses along with the ROC data show that
several correction procedures that have been
used in the past are insufficient, but that a dual-
process signal-detection method provides a rea-
sonable account of the data.

THE PROCESS DISSOCIATION PROCEDURE

In tests of recognition memory, subjects
must decide whether a test item was presented
in a previously studied list. Subjects could base
recognition judgments on assessments of fa-
miliarity because, on average, an item that was
presented in the study would be more familiar
than one that was not. However, subjects may
also be able to recollect some aspect of the
study event (e.g., “I remember seeing the word
... it was the first word in the list”) and use this
as a basis for recognition judgments.

Recollection and familiarity are said to dif-
fer in a number of ways. For example, famil-
iarity is thought to be a fast basis for respond-
ing (Atkinson & Juola, 1974; Jacoby, 1991;
Mandler, 1980) that relies on perceptual char-
acteristics (Jacoby & Dallas, 1981) and reflects
the automatic or unconscious use of memory
(Jacoby, 1991) that is largely spared by amne-
sia (Piercy & Huppert, 1972; Verfaellie &
Treadwell, 1993). In contrast, the use of recol-
lection is described as a slow, search-like
process that relies on conceptual processing or
associative information and requires attention.
Furthermore, recollection is said to be absent
or reduced in amnesic patients.

Jacoby (1991) developed the process disso-
ciation procedure to derive quantitative esti-
mates-for the contribution of recollection and
familiarity to recognition memory perfor-
mance. Estimates for recollection and famil-
iarity were gained by contrasting performance
in an inclusion condition where both process-
es acted in concert, to performance in an ex-
clusion condition where the two processes act-
ed in opposition. Although the procedure has
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been implemented in several different ways in
recognition memory (see Yonelinas & Jacoby,
1994), let us consider the procedure as it was
first used by Jacoby (1991). In phase 1 of that
study, subjects read a list of words under inci-
dental encoding conditions. In phase 2, subjects
heard a different list of words and were in-
structed to remember them for a later recogni-
tion test. At test, subjects were presented with
a list containing a mixture of words that were
earlier seen, earlier heard, or new, and were
given either inclusion or exclusion instructions.
In the inclusion condition, they were instruct-
ed to call a word old if it was in either the seen
or heard list. In the exclusion condition, they
were instructed to call a word old only if it was
in the heard list. Further, they were told that if
they could recollect that the word was seen
they could be sure the word was not heard,
and they should call it new. That is, subjects
were instructed to include seen words in the in-
clusion condition and exclude those words in
the exclusion condition.

Performance in the inclusion and exclusion
conditions for the seen words was used to de-
rive estimates for recollection and familiarity.
If the two processes are independent, the prob-
ability of responding “yes” to a seen word in
the inclusion condition can be written as

P(“yes”/old)inc = R + F — RF,

the probability that the item is recollected (R)
plus the probability that it is familiar (F), mi-
nus the probability that the item is recollected
and familiar (RF). That is, a seen item can be
accepted as old if it is recollected as having
been seen, or if it is sufficiently familiar to be
judged old.

The probability of responding “yes” to a
seen item in the exclusion condition can be
written as

P(“yes”/old)exc = F — RF,

the probability the item is familiar, minus the
probability it is familiar and recollected. That
is, subjects will only accept a seen word if it is
familiar but they cannot recollect that it was
seen. Recollection was calculated by subtract-
ing the exclusion score from the inclusion score
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[R + F — RF — (F — RF) = R]. Having solved
for R, either of the two equations could be
used to solve for familiarity [e.g., exclusion/
(1 — R) =F].

Jacoby (1991) found that dividing attention
selectively decreased recollection, and that
words solved as anagrams led to greater recol-
lection and familiarity than those simply read
at study. Verfaellie and Treadwell (1993) used
the same procedure and found that amnesia
dramatically reduced recollection but left fa-
miliarity intact. A similar, although less dra-
matic effect, was found with aging (Jennings
and Jacoby, 1994). Other variables such as in-
creasing list length and decreasing retrieval
time by speeding responses are found to reduce
recollection but to leave familiarity intact
(Yonelinas & Jacoby, 1994). In another study,
which we return to later, relaxing response cri-
terion was found to lead to an increase in the
proportion of items accepted on the basis of fa-
miliarity but to leave recollection relatively
unchanged (Yonelinas, 1994).

The validity of the estimates rely on two
critical assumptions. The first assumption is
that the two processes are independent. This as-
sumption has been examined at length else-
where (see Jacoby, Toth, & Yonelinas, 1993;
Jacoby, Toth, Yonelinas, & Debner, 1994; Ja-
coby, Yonelinas, & Jennings, in press; Joor-
dens & Merikle, 1993). Here, we focus on a
second assumption which is that subject’s cri-
terion for responding does not differ in the in-
clusion and exclusion conditions. It is possible
that under some conditions subjects are more
lax with their use of familiarity in the inclusion
condition, where both recollection and famil-
iarity lead to correct responses, than they would
be in the exclusion condition, where familiar-
ity can lead to an incorrect response. If subjects
do use different criteria for responding in the
two conditions then this should be reflected in
different false alarm rates to new items in the
two conditions. Although in the past we have
been careful to avoid such differences, differ-
ences do occasionally arise.

How can we solve for R and F when the
base rates differ between inclusion and exclu-
sion conditions? The solution involves incor-
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porating the false alarm rates into the inclusion
and exclusion equations. The aim of the current
paper is to examine several different methods
for incorporating false alarms in the process
dissociation procedure and to assess their va-
lidity.

HiGH THRESHOLD CORRECTION METHODS

Several different high threshold correction
methods have been used to measure the effects
of memory and guessing within a single-factor
theory of recognition memory. The general idea
is that subjects can correctly identify an old
item (Hit) either on the basis of “true” memo-
ry (i.e., a studied item exceeds a memory
threshold) or on the basis of a guess, and that
false alarms to new items (FA) arise because of
guessing. The false alarm rate is used to esti-
mate the probability of a guess, and guessing
is algebraically removed from the hit rate to ob-
tain a pure measure of memory. Although the
procedures are typically used to produce a uni-
tary measure of memory, we consider two such
methods which have been applied to the
process dissociation procedure.

HIT — FA. Probably the simplest way of
correcting for false alarms is to subtract the
probability of a false alarm from the probabil-
ity of a hit. This is the correction method pro-
posed for the process dissociation procedure by
Roediger & McDermott (1994). They exam-
ined data from a study by Verfaellie and Tread-
well (1993), which we mentioned earlier, in
which the process dissociation procedure was
used to examine the effect of amnesia on rec-
ollection and familiarity. Roediger and Mc-
Dermott pointed out that there were differences
in base rate between normal and amnesic pa-
tients. They argued that any conclusions drawn
from that study can be questioned because the
base rate differences may distort the estimates
of recollection and familiarity. They went on to
suggest a correction procedure in which base
rates were subtracted from inclusion and ex-
clusion scores before the estimates of recol-
lection and familiarity were calculated. Al-
though Verfaellie (1994) showed that the con-
clusions of the Verfaellie and Treadwell study
were not changed by introducing such a cor-
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rection procedure, we later discuss a study for
which the correction procedure does influence
conclusions.

The basic idea underlying the HIT-FA cor-
rection procedure is that the probability of a hit
reflects true memory (recollection and famil-
iarity) plus the probability that the subject cor-
rectly guesses that the item was studied. We can
either subtract false alarm rates from the in-
clusion and exclusion scores before we use the
process dissociation equations or we can add
guessing terms to the inclusion and exclusion
equations such that

P(“yes”/old)inc = R + F — RF + Gi
P(“yes”/old)exc = F — RF + Ge.

The proportions of new items accepted un-
der inclusion and exclusion conditions are used
as measures of guessing (Gi and Ge, respec-
tively). Given the probability of accepting old
and new items in the inclusion and exclusion
conditions we can then solve the equations to
derive estimates of R and F.

(HIT-FA)/(I1-FA). Another common high
threshold correction method is the (HIT-FA)/(1-
FA) method. By this method the false alarm rate
is first subtracted from the hit rate, then the sum
is divided by one minus the false alarm rate. We
later return to a study by Komatsu, Graf, and
Uttl (1994) in which this correction procedure
was applied to data from the process dissociation
procedure. This correction method can be repre-
sented by writing the inclusion and exclusion
equations in the following way:

P(“yes”/old)inc = R + F — RF + Gi
— Gi(R + F — RF)

P(“yes”/old)exc = F — RF + Ge
— Ge(F — RF).

As with the previous correction method, R and
F can be calculated on the basis of the proba-
bility of accepting old and new items in the in-
clusion and exclusion conditions.

The notion behind this correction, at least as
it is used in a single factor theories, is that
guessing is independent of memory. This can be
seen in the inclusion equation where overall
performance is equal to memory (R + F — RF)
plus guessing (Gi) minus the intersect (Gi(R +
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F — RF)). However, when the same correction
is applied to the exclusion equation, guessing is
no longer treated as being independent of mem-
ory (R + F — RF) but is treated as independent
of (F — RF). In the Discussion, we return to a
procedure that treats guessing as independent of
memory in both equations.

FAMILIARITY AS A SIGNAL-DETECTION PROCESS

An alternative approach for incorporating
false alarms into a dual-process model was
proposed by Jacoby, Toth and Yonelinas (1993)
who argued that false alarms arise because new
items are incorrectly accepted on the basis of
familiarity. That is, some new words may be fa-
miliar because of their preexperimental histo-
ry, and subjects may incorrectly attribute this
to the word’s occurrence in the study list. They
argued that false alarms should not be correct-
ed from overall performance, which reflects
recollection and familiarity, but rather from
the probability of accepting an item on the ba-
sis of familiarity alone. Further, they suggest-
ed that the familiarity process might be de-
scribed in terms of signal-detection theory.

The notion was elaborated by Yonelinas
(1994), who argued that overall recognition
performance reflected the independent contri-
bution of a discrete recollection process, and
familiarity process that reflects a Gaussian
equal-variance signal-detection model. The
idea is that all items have some level of pre-
experimental familiarity which can be de-
scribed by a Gaussian distribution (see Fig. 1).
Studying a list of items temporarily increases
the familiarity of those items, which has the ef-
fect of shifting the distribution to the right.

e \ | N
CONFIDENCE: 1 2 3 4 5 6
—— ] S
RESPONSE: NO YES
FAMILIARITY

FIG. 1. Familiarity distributions representing old and new
items in a Gaussian equal-variance signal-detection model.
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The subject selects some level of familiarity so
that only the items exceeding that level are
judged as old. Independent of the familiarity
process, subjects could correctly accept old
items if they recollected some information
about the study episode in which the item was
encountered.

Important for this model and the associated
correction method is that the response criteri-
on is applied only to familiarity. Recollection
is assumed to be independent of the false alarm
rate, and false recollection of episodes which
did not occur is assumed to be infrequent. So,
as the criterion changes, the number of items
accepted on the basis of familiarity will change
but the probability of recollection will remain
fixed. Later we discuss evidence in support of
this assumption.

If familiarity is a signal-detection process,
then the familiarity term in the original equa-
tions can be replaced by a function represent-
ing the probability that an old item exceeds
the response criterion.

Od’/2 — O),

representing the proportion of the old item dis-
tribution exceeding the criterion (C) (see
Macmillan & Creelman, 1991). When this term
is substituted into the inclusion and exclusion
equations we have

P(“yes”/old)inc = R + ®(d'/2 — Ci)
— R*®(d'/2 — Ci)

P(“yes”/old)exc = ®(d'/2 — Ce)
— R *®(d'/2 — Ce).

Of course, for a given value of C, there will be
some proportion of new items incorrectly ac-
cepted as old. The false alarm rate will be equal
to the proportion of the new item distribution ex-
ceeding the criterion, and this can be written as:

P(“yes”/new)inc = ®(—d'/2 — Ci)
P(“yes’/new)exc = ®(—d’'/2 — Ce).

Thus we have four equations (the probabil-
ity of accepting old and new items under in-
clusion and exclusion instructions) and four
variables (R, d’, Ci, and Ce). We can solve the
equations to derive estimates for the four vari-
ables. However, because of the nature of the
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normal distributions that underlie the signal-de-
tection model, a simple algebraic solution is not
available. To solve for the unknowns we use a
gradient descent search algorithm. The algo-
rithm selects a set of parameter values (R, d’,
Ci, and Ce) and calculates a set of predicted
values for the inclusion and exclusion scores
and false alarms based on the above equations.
The parameter space is systematically searched
for the set of parameters that produces the ob-
served scores by minimizing the sum of the
squared differences between the observed and
predicted values.! Alternatively, one could as-
sume a logistic, rather than normal, distribu-
tion, in which case a clear algebraic solution
does exist (see Appendix a). However, in keep-
ing with the assumptions of signal-detection
theory, we have assumed normal distributions
and therefore must rely on the algorithm to lo-
cate the solution.

We should note that because familiarity is
assumed to reflect a signal detection process,
it will be measured in terms of d’ rather than in
terms of simple probabilities. This is because
the probability that an item will be accepted on
the basis of familiarity is not fixed and will
vary with response criterion.

Given the three different correction methods,
how do we assess which is most appropriate?
In the current study, we first evaluate the cor-
rection methods by examining ROCs. Finally,
the procedures are tested by examining the es-
timates they produce in a data set in which siz-
able base rate differences exist.

ASSESSING THE CORRECTION METHODS: ROCS

ROCs provide a powerful tool for distin-
guishing between the correction methods be-
cause the models that underlie the three meth-
ods predict very different ROCs. By compar-
ing the predicted and observed ROCs in the
inclusion and exclusion conditions, we can as-
sess each correction method.

An ROC is the function that relates the pro-
portion of hits to the proportion of false alarms.
Figure 2 presents ROCs for inclusion and ex-
clusion conditions in a recognition memory
test. The ROCs are from “long” lists (30 items

! The algorithm is available on request.
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FiG. 2. Observed ROCs for inclusion and exclusion
conditions for long lists (Yonelinas, Experiment 1, 1994).

in each) of Experiment 1 (Yonelinas, 1994). In
that experiment, subjects studied two lists of
words followed by a list discrimination yes—no
recognition test. In one condition, subjects were
instructed to respond “yes” if the item was in
list 1, and in the other they were asked to re-
sponse “yes” if the item was in list 2. Subjects
were instructed to respond “no” if the item was
new or if they could recollect that it was in the
nontarget list. Thus, they should include items
that they recollected from the target list and ex-
clude items that they recollected from the in-
appropriate list. The inclusion score was mea-
sured as the probability of accepting a target
word (i.e., list 1 words accepted under list 1?
instructions and list 2 words accepted under list
27 instructions). The exclusion score was mea-
sured as the probability of accepting a nontar-
get item (i.e., list 1 words accepted under list
2? instructions and list 2 words accepted under
list 1? instructions).?

Subjects made their responses on a 6-point
confidence scale from sure yes (6) to sure no
(1). ROCs were plotted as a function of re-
sponse confidence such that the first point in-
cluded only the most confidently remembered
items (i.e., items eliciting a response of 6). The

2 The inclusion condition in list discrimination proce-
dure differs from the standard inclusion condition (i.e., ac-
cept items from either list): However, ROCs under list dis-
crimination instructions were not found to differ signifi-
cantly from those under standard inclusion instructions
(Yonelinas, 1994).
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second point included all of the most confident
responses plus the second most confident re-
sponses (i.e., items eliciting a response of 6 or
5). In this way the 6-point response scale pro-
duced a function with 5 points (see Fig. 2).
The inclusion function begins at .35 on the
y axis and gradually increases in a curvilinear
fashion toward the upper right corner of the
graph. The curvilinear aspect of the ROCs does
not seem to be a product of averaging, as the
curve was seen across subjects, study posi-
tions, and test positions. The exclusion function
begins at the x—y intercept and also increases in
a curvilinear fashion, but remains far below
the inclusion curve. Moreover, as the false
alarm rate increases, the exclusion function
crosses the diagonal. Thus, as response criteri-
on is relaxed, the probability of accepting an
old item in the exclusion condition drops below
that of accepting a new item. This pattern was
observed in several experiments in the Yoneli-
nas (1994) study. Moreover, cases where ex-
clusion scores drop below the false alarm rate
are quite common (Debner & Jacoby, 1994;
Jacoby, 1994; Jennings & Jacoby, 1993; Ko-
matsu, Graf & Uttl, 1994; Toth, Reingold & Ja-
coby, 1994; Yonelinas & Jacoby, 1994).
Predicted ROCs for each correction method
were generated by setting some level of recol-
lection and familiarity, and varying the guessing
or response bias parameter. This is analogous to
examining performance as a function of re-
sponse confidence. For the threshold models,
G was varied from O to 1 (or until the hit rate
was equal to 1.0) and the predicted inclusion and
exclusion scores were plotted. For the dual-
process signal-detection model, response crite-
rion was varied from its minimum to its maxi-
mum value, and again inclusion and exclusion
scores were plotted. Hypothetical ROCs for each
correction method are presented in Fig. 3.
How did the predicted and observed ROCs
compare? Examination of Figs. 2 and 3 shows
that both of the threshold correction methods
provided very poor fits to the observed ROCs.
In contrast to the observed data they both pre-
dict linear (straight line) ROCs. Because the in-
clusion and exclusion equations are linear, in-
creases in G produce proportional increases in
the hits and false alarms, leading to straight line
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FI1G. 3. Predicted ROCs for the (a) HIT — FA, (b) (HIT

— FA)/(1 — FA), and (c) dual-process signal-detection
models.

ROCs. This is particularly problematic for
these correction methods because not only are
curvilinear ROCs found under inclusion and
exclusion conditions but they are almost al-
ways observed in standard studies of recogni-
tion memory (e.g., Donaldson & Murdock,
1968; Gehring, Toglia & Kimble, 1976; Glanz-
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er & Adams, 1990; Ratcliff, Sheu, & Gron-
lund, 1992). In fact, the observed nonlinearity
of ROCs was one of the primary reasons that
threshold models of recognition were initially
rejected as viable models for simple recogni-
tion judgments.

A second problem for the threshold correc-
tion methods is that neither can account for
the exclusion function crossing the diagonal. If
recollection and familiarity are greater than O
then the probability of accepting an old item in
the exclusion condition can never drop below
the probability of a guess. This is because in the
exclusion equations, guessing adds to the ef-
fects of memory. If R and F are greater than O,
then memory can only increase the probabili-
ty of accepting items in the exclusion condition
above the probability of a guess (the base rate).
In fact, if the observed exclusion score drops
below the base rate, the threshold correction
methods would lead to negative estimates of fa-
miliarity. As we will see, this problem regularly
arises when the threshold corrections are ap-
plied to experimental data.

In contrast to the threshold correction meth-
ods, the dual-process signal-detection method
accounts well for the observed ROCs. In agree-
ment with the data, the model predicts curvi-
linear functions for the inclusion and exclusion
conditions. The reason for this is that the nor-
mal distributions that underlie the familiarity
component lead to nonlinear increases in the
probability of accepting old and new items.
The correction procedure also accounts for the
exclusion curve dropping below the diagonal.
Because recollection of studied items leads to
a “no” response in the exclusion condition,
recollection places a ceiling on the number of
old items that will receive a “yes” response.
Thus the probability of accepting an old item
in the exclusion condition should not increase
beyond 1 — R. In contrast, because we assume
that subjects do not recollect new items, the
false alarm rate can increase to 1.0. Thus as the
response criterion is relaxed and the false alarm
rate increases toward 1.0, the exclusion score
approaches 1 — R.

Although the signal-detection correction pro-
cedure does provide a better fit than either of
the threshold corrections, we have found that
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the observed ROCs tend to deviate slightly
from the predicted curves at the extreme lev-
els of response confidence. The leftmost point
on the inclusion function tends to be slightly
lower than the model predicts. This discrepan-
cy was discussed by Yonelinas (1994) and
seems to arise either because some small pro-
portion of recollected items did not lead to the
most confident recognition judgments or be-
cause subjects were occasionally making list
discrimination judgments based on the assess-
ment of familiarity. In contrast, the right most
point on the exclusion function tends to be
slightly higher than the model predicts. This
deviation may arise because of noise. If sub-
jects were to occasionally respond randomly
(e.g., accidentally hit the wrong key or simply
guess) this would tend to force both the inclu-
sion and the exclusion curves toward the diag-
onal (i.e., chance performance). We have found
that, because the ROCs are cumulative, the ef-
fect of adding noise to the exclusion function
is most pronounced as the false alarm rate in-
creases. Thus, if subjects are occasionally re-
sponding randomly, the observed exclusion
ROC will tend to rise above the predicted ROC
as the response criterion becomes more lax. In
any case, the deviations from the predicted
curves are relatively minor, and are limited to
the extreme high and low levels of response
criterion. Our experience is that cases in which
the correction method is required do not in-
volve such extremes but rather fall in the mid-
dle of the functions where the model fits the da-
ta quite well.

In summary, despite some minor deviations
at the extreme levels of response confidence,
the dual-process signal-detection model pre-
dicted ROCs that were very close to those ob-
served. It accounted for the curvilinearity of the
inclusion and exclusion curves as well as the
observation that the exclusion function dropped
below the diagonal. The threshold corrections
did not account for either of these findings.

EXAMINING THE EFFECTS OF LEVELS OF
PROCESSING AND WORD FREQUENCY

Although the dual-process signal-detection
method provides a better account of the ROC
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data than either of the threshold models, one
might ask if the difference between the cor-
rection methods is really that great and whether
using the incorrect method would radically al-
ter the conclusions drawn from a study. In the
current section we examine a data set from
Komatsu et al. (1994), in which sizable base
rate differences were observed, and show that
the different correction methods can lead to
dramatically different conclusions. Let us con-
sider that study in more detail.

Komatsu et al. (Experiment 1, 1994) used
the process dissociation procedure to examine
the effects of word frequency and levels of
processing on recollection and familiarity in
recognition memory. Subjects encoded a list of
written words by answering questions about
the pleasantness of the words (deep processing)
or the number of syllables in each word (shal-
low processing). Half of the words in each con-
dition were high-frequency and half were low-
frequency words. Subjects then heard a list of
words which they were to try to remember for
a later memory test. Finally, subjects were giv-
en a recognition memory test under inclusion
instructions (i.e., respond yes to words that
were seen or heard), or exclusion instructions
(i.e., respond yes only to words that were
heard). The test list contained a mix of seen,
heard, and new words. The probability of ac-
cepting previously seen high and low frequen-
cy words encoded under deep or shallow con-
ditions and tested under inclusion or exclusion
instructions are presented in Table 1. The prob-
ability of accepting new high and low fre-
quency words are also presented.

An examination of Table 1 shows that the
probability of accepting new items was not
constant across conditions. Subjects were more
likely to incorrectly accept new high frequen-
cy words than new low frequency words.
Moreover, subjects accepted more high fre-
quency words under inclusion instructions than
under exclusion instructions.

Given these differences in base rate, Ko-
matsu et al. (1994) realized they could not use
the standard process dissociation equations,
and echoed Roediger and McDermott (1994)
by using correction procedures that correct for
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TABLE 1
THE PROPORTION OF OLD AND NEW AND HIGH AND Low
FREQUENCY WORDS ACCEPTED UNDER INCLUSION AND EXx-
CLUSION CONDITIONS

Encoding Word Test condition
conditions frequency Inclusion Exclusion
Pleasantness Low .89 .16
High 91 37
Syllables Low 73 .25
High 74 44
New Low .15 .16
High .38 .29

Note. Data from Experiment 1 in Komatsu et al. (1994).

differences in base rates before calculating es-
timates for recollection and familiarity. They
used both the HIT-FA and the (HIT-FA)/
(1-FA) correction methods. Table 2 presents
those estimates along with estimates we cal-
culated using the dual-process signal-detection
method.

All three correction methods led to the same
conclusions with respect to the effect of levels
of processing and word frequency on recollec-
tion. Deeper processing led to an increase in
recollection, and low frequency words were
more likely to be recollected than were high
frequency words. However, the patterns dif-
fered dramatically with respect to the effects on
familiarity.

By the HIT-FA and the (HIT-FA)/(1-FA)
methods, deeper processing led to lower esti-
mates of familiarity than did shallow process-
ing. Moreover, high frequency words led to
greater increases in familiarity between study
and test than did low frequency words. In con-
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trast to the threshold corrections, the signal-de-
tection method showed deeper levels of pro-
cessing to increase familiarity and low fre-
quency words to have a larger increase in fa-
miliarity than did high frequency words.
Clearly, the different correction procedures
do lead to different conclusions, demonstrating
that selecting the valid correction procedure is
critical. Although the previous ROC analysis
showed the threshold corrections to be inap-
propriate for the process dissociation proce-
dure, can we reject any of these methods on the
basis of the current data alone? In fact, an ex-
amination of the results based on the different
correction methods strongly suggests that the
two threshold correction can be rejected.
Consider the results produced by the high
threshold models. Both the HIT-FA and the
(HIT-FA)/(1-FA) correction methods led to the
conclusion that familiarity decreased with
deeper levels of processing. This “reversed”
levels of processing effect conflicts with prior
work using the process dissociation procedure,
results from amnesic patients, and results from
indirect tests. When levels of processing is ex-
amined under conditions where base rate dif-
ferences were avoided (Toth, in preparation)
the process dissociation procedure showed that
deeper levels of processing led to an increase
in both recollection and familiarity. Moreover,
studies with amnesics suggest that deeper lev-
els of processing does increase familiarity. Am-
nesics’ recognition performance, which is pre-
sumably supported primarily by familiarity (see
Piercy & Huppert, 1972; Verfaellie & Tread-
well, 1993), is shown to benefit from deeper

TABLE 2
PARAMETER ESTIMATES FOR THE HIT-FA, THE (HIT-FA)/(1-FA) (FROM KOMATSU ET AL., 1994), AND THE DUAL-PROCESS
SIGNAL-DETECTION (DPSD) CORRECTION METHOD FOR DEEP AND SHALLOWLY ENCODING, HIGH AND Low FREQUENCY

WORDS.
HIT-FA HIT-FA/(1-FA) DPSD
Encoding Frequency R F R F R F(d")
Pleasantness Low .73 -.01 91 —.40 73 1.25
High 45 .14 .79 .30 .50 1.21
Syllables Low 48 .18 .60 23 49 0.97
High 21 .19 43 35 .23 0.73

Note. Estimates are in terms of probabilities, except for familiarity in the DPSD method which is measured in terms of d’.
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levels of processing (e.g., Mayes, Meudell,
Neary, 1980). Finally, in indirect tests such as
stem and fragment completion, deeper levels of
processing is found either to have no effect on
performance or to lead to a slight increase in
performance (for a review see Roediger & Mc-
Dermott, 1993). It seems most likely that the
reversed levels of processing effect associated
with the threshold corrections was an artifact
produced by those correction procedures.

The threshold correction procedures also led
to problematic conclusions regarding the ef-
fects of word frequency. They showed that the
familiarity of high frequency words increased
more than that of low frequency words. If low
frequency words have a lower base rate famil-
iarity then high frequency words, as the base
rates in the current study show, then they
should benefit most from the study phase.
In fact, in a process dissociation experiment
where base rates differences were not a prob-
lem, Jacoby (in preparation) found that the fa-
miliarity of low frequency words increased
more than that of high frequency words, sug-
gesting that the advantage associated with high
frequency words was also an artifact of the
threshold correction methods.

A final problem for the high threshold cor-
rection methods is that estimates for familiar-
ity are sometimes negative. For example, Ko-
matsu et al. present estimates for familiarity as
low as —.40. Although our calculation—based
on inclusion and exclusion data in Komatsu et
al.’s tables—the estimates are closer to zero, it
is clear that the threshold corrections can lead
to negative probability estimates. Similarly,
Roediger and McDermott (1994) report nega-
tive estimates for familiarity for the Verfaellie
and Treadwell data when they used a HIT-FA
procedure. Although small negative probabili-
ties might reflect low levels of familiarity along
with measurement error, the larger negative
values suggest that the threshold correction
methods are simply inappropriate.

In contrast to the threshold correction meth-
ods, the signal-detection correction method
produced a much more reasonable account of
the data. In agreement with prior research, the
procedure showed that both recollection and fa-
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miliarity increased with deeper levels of pro-
cessing, and that low frequency words exhib-
ited a greater increase in familiarity than did
high frequency words.

The current analysis of Komatsu’s data
shows that choosing the correct correction
method for the process dissociation procedure
is critical because different correction methods
lead to dramatically different conclusions. Sec-
ond, based on the conclusions drawn using
each method, it is clear that the high threshold
correction methods lead to several problemat-
ic conclusions, and that the signal-detection
method is the only one to produce a pattern of
results that converges with prior research.

ALTERNATIVE CORRECTION METHODS

In the current paper we examined three cor-
rection methods that have been applied to the
process dissociation procedure. There are of
course, numerous other possible ways in which
base rates could be incorporated into the pro-
cedure. However, we examined several addi-
tional methods and none produced ROCs that
fit the observed ROCs as well as that of the
dual-process signal-detection model. Next, we
briefly discuss a number of those alternatives.

One possibility that we considered is that
guessing is a process which is independent of
both recollection and familiarity. If this is true,
then the inclusion and exclusion equations can
be written:

P(“yes”/old)inc = R + F — RF + Gi
— Gi(R + F — RF)

P(“yes”/old)exc = F — RF + Ge
— Ge(R + F — RF).

This correction is very close to the (HIT-
FA)/(1-FA) correction. In fact the inclusion
equations are identical, and it is only the ex-
clusions equation that differs—by the addition
of the second R term. This difference allows
the exclusion ROC for this model to drop be-
low the diagonal. That is, as G approaches 1.0
the exclusion function approaches 1-R. Al-
though this allows the method to account for
the observation that exclusion function does
drop below the diagonal, the model is linear
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and in contrast to the observed data, predicts
straight line ROCs.

Another related threshold model that we con-
sidered assumes that experimental familiarity
is additive with preexperimental familiarity.
The equations for this correction method can be
written:

P(“yes”/old)inc = R + (F + Gi)
— R(F + Gi)

P(“yes”/old)exc = (F + Ge) — R(F + Ge).

This method predicts ROCs that are similar to
the independent guessing method. The func-
tions are linear and the exclusivity function
drops below the diagonal. We have found that
this correction method often leads to estimates
that are very close to those of the dual-process
signal-detection model. The relationship be-
tween these two methods is the same as that be-
tween standard signal-detection theory and a
HIT-FA correction in single factor models.
However, again the linearity of the model rules
it out as a viable correction method.

An alternative method that we considered
was to use a standard signal-detection correc-
tion on the overall recognition scores before us-
ing the process dissociation procedure. For ex-
ample, one could convert the inclusion and ex-
clusion scores into d’ values. However, this
correction also runs into several problems.
First, the standard signal-detection model pre-
dicts ROCs that begin at 0,0 and increase to-
ward 1,1 and that are symmetrical along the
negative diagonal. An examination of Fig. 2
shows that the ROCs are not symmetrical along
the diagonal and that they intersect the y axis.
To allow the signal-detection method to ac-
count for the asymmetrical ROCs, one could
vary the old to new variance ratio. This could
produce asymmetrical inclusion ROCs but
would still have difficulty explaining why the
curve intersects the y axis at a point close to the
estimate for recollection. Even more problem-
atic for this correction method is the observa-
tion that the exclusion function crosses the di-
agonal. We have found no way to allow the
model to account for the exclusion curve drop-

831

ping below the diagonal, short of introducing
a discrete recollection process.

A related approach is to apply signal-detec-
tion theory separately to both familiarity and
recollection. That is, treat the two processes as
separate dimensions in a multidimensional sig-
nal-detection model (see Macmillan & Creel-
man, 1991). Although this approach may be
useful in some applications of the process dis-
sociation procedure, the low false alarm rate as-
sociated with recollection makes it unnecessary
in the recognition memory experiments that
we have examined. For example, in the ROC
experiment discussed earlier, the false alarm
rate for the highest confidence responses was
zero for every subject, and the hit rate was
very close to the estimate for recollection, sug-
gesting that recollection can be treated as a
discrete retrieval process. We are currently ex-
ploring other tasks, using the process dissoci-
ation procedure, for which a multidimension-
al signal-detection model may be appropriate.

WHEN Do WE NEED To CORRECT
FOR GUESSING?

Although we examined several cases where
there was a need to introduce a correction for
base rates, these procedures are often not need-
ed. Let us consider when the correction proce-
dure is needed and the consequences of failing
to apply the correction.

If the base rates do not change across con-
ditions, then the standard inclusion/exclusion
equations can be used—a correction method is
not necessary. This is by far the simplest case
and should be preferred. However, we should
note that the estimates for familiarity will be
dependent on the false alarm rate. If a measure
of familiarity that is independent of base rate
is required then familiarity should be convert-
ed to a d’ measure. This can be done with stan-
dard d’ tables by looking up the d” value asso-
ciated with the false alarm rate and the estimate
of familiarity as the hit rate.

If base rates differ between inclusion and
exclusion conditions then the standard equa-
tions will lead to distortions in the absolute
estimates of recollection and familiarity. The
most common difference we have observed is
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that subjects are more lenient with familiarity
in the inclusion than the exclusion conditions
and thus the false alarm rate is greater in the in-
clusion conditions. To obtain true estimates of
these processes, or to compare the estimate of
familiarity to new items, requires introducing
the correction method.

However, if the goal of the study is to ex-
amine the qualitative effect of a variable on rec-
ollection and familiarity, then such a correction
may not be necessary. For example, imagine a
study in which we were interested in the effects
of study time on recollection and familiarity. In
this experiment, subjects study a list contain-
ing a mix of fast and slow items. Imagine that
at test subjects accept more new items in the in-
clusion than in the exclusion condition. The
difference in base rates between inclusion and
exclusion conditions would inflate the esti-
mates of R and F. However, because the base
rates are the same for fast and slow items, the
difference would be expected to introduce the
same distortion to the estimates of both types
of item. So, although the absolute estimates
would be distorted, the qualitative effect of the
variable (study time) on recollection and fa-
miliarity would be preserved. Thus a base rate
difference between inclusion and exclusion
conditions does not always require a correction
method if the goal of the study is to examine
the qualitative effects of some variable on rec-
ollection and familiarity.

If base rates differ across some experimen-
tal variable, the correction method may also be
avoided. Differences of this sort would not in-
fluence estimates of recollection but would in-
fluence estimates of familiarity. To compare
estimates of familiarity it would be necessary
to convert the measures of familiarity (in prob-
abilities) into d” values. To do this one can use
the false alarm rate along with the familiarity
estimate (as the hit rate) and simply use d’
look-up tables to determine the d” value. With
familiarity measured in terms of d” we can
compare familiarity estimates independent of
false alarm rate.

If there are differences between inclusion
and exclusion conditions and between experi-
mental conditions, as was the case in the Ko-
mutsu et al. (1994) study, then there seems to
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be no short cut, and the dual-process signal-de-
tection correction method is required.

APPLYING THE MODEL TO OTHER
MEMORY TASKS

The process dissociation procedure has been
applied to numerous tasks other than recogni-
tion memory. For example, the procedure has
been used to examine the contribution of rec-
ollection and automatic influences of memory
in stem completion tasks (e.g., Jacoby, Toth &
Yonelinas, 1993). Although the same dual-
process signal-detection correction method
may be applied in other domains, we advise
considerable caution when doing so, and until
an understanding of the processes in the par-
ticular task is understood, we would recom-
mend trying to avoid base rate differences if at
all possible.

We have begun to examine the application of
the correction procedure to stem completion
performance; however, the application of the
correction method in that domain is consider-
ably more complex and may not be appropriate.
ROC analysis of stem completion performance
is made difficult because, unlike recognition,
subjects do not have to respond to all items. In
fact, the task relies on subjects failing to re-
spond correctly to many of the test items. Be-
cause of this, we cannot derive ROCs in the way
we did for recognition performance. Moreover,
base rate differences in stem completion may
arise for different reasons than a shift in re-
sponse criterion. For example, they may reflect
a generate/recognize strategy rather than a shift
in response criterion (see Jacoby, Toth &
Yonelinas, 1993). Finally, it is not clear that
we are dealing with exactly the same process-
es in the different memory tasks. Although it is
likely that similar processes support recollection
in recognition and stem completion, the
processes that lead an item to seem familiar in
arecognition task may not be the same as those
that lead a word to come to mind in a stem
completion task. Even if similar processes do
support performance in different tasks it is like-
ly that the different task demands will influence
how those process affect performance.

One domain in which the current model may
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be useful is in studies of source monitoring. In
a typical source monitoring experiment, sub-
jects study items from two different sources.
They are then given a recognition test for
which they must first distinguish old items
from new distractor items, and then are asked
to judge the source of recognized items. A
problem for current theories of source moni-
toring is that they cannot account for the ob-
served recognition ROCs. Batchelder and
Riefer (1990) proposed several multinomial
models of source monitoring that have been
used extensively in studies of source monitor-
ing. However, Kinchla (1994) showed that
ROCs generated by these multinominal models
were not in agreement with a large body of
data on recognition memory. The difficulty is
that the multinomial models are high-threshold
models and so must predict linear ROCs, rather
than the curvilinear ROCs such as those found
in recognition memory experiments.

We are currently examining the possibility of
modeling performance on standard source
monitoring tasks with the dual-process signal-
detection model discussed in the current paper.
By such a model, initial recognition judgments
are based on recollection and familiarity, but
source judgments reflect recollection alone. If
familiarity reflects a signal-detection process
that is independent of a discrete recollection
process, then one would expect to see the type
of curvilinear ROCs that are so problematic
for current source monitoring models.

SUMMARY

In current study we examined several dif-
ferent methods for incorporating response bias
into a dual-process theory of recognition mem-
ory. We showed that when using the process
dissociation procedure to estimate the contri-
bution of recollection and familiarity, that dif-
ferences in response bias can arise, and that the
way in which these differences are accounted
for leads to dramatic differences in the con-
clusions drawn. Several correction methods
that have previously been applied to the process
dissociation procedure were found to be inad-
equate. They led to conclusions that conflict-
ed with prior research and were not able to ac-
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count for important aspects of the observed
ROC data. A dual-process signal-detection
model, on the other hand, led to conclusions
that were in agreement with prior research, and
the model underlying the procedure was found
to provide a reasonable account of the observed
ROC data.

APPENDIX

The closed-form solution for R and d'F giv-
en H;, FA,, H; and FA and assuming a logis-
tic function for the cumulative function of the
Familiarity (signal detection) component.

The clasic single-factor solution for d’, as-
suming a logistic function, is

H(l — FA)
d=1n|——= (A1)
FA(1 — H)
Therefore, if R = 0, then
H=H,=F= - e A2
e ) R ) (A2)
However, if R # 0, then
FA . e
H,=R+(1—R)< Ay >
1+ FA (e — 1)
(A3)
and
A . e
H.=(1 —R I
g~ )< 1+ FA (e — 1) ) (Ad)
Therefore
ed = (HI - R)(1 — FA,)
FA,(1 - H)
H.(1—-—FA
= 3 ) (A5)

FA,(1 — R — H))

(H,— R)(1 — FA) - FA, (1 — R — H})
=H,(1 — FAp) - FA, (1 — H) (A6)

R®+ RH, — H,— 1) + [Hl(l — H))
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FA,(1 — FA
_ E(l — H[),_I(_._E)

FA, (1 — FA,) ] =0 (A7

The solution for R is generated from Eq. (A7)

—b+ Vb2 —4ac

R= 5 (A8)
where
a=1 (A8.1)
b=(H,—H -1  (A82)
¢c=H,(1—-Hy)—H,(l - H)
4,4 - Hy (A8.3)

T EA (1 - FA)

And the solution for d'F is generated from Eq.
(A5)

d'F = ln[

zln[

Note: Equation (A8) indicates that there are
two solutions for R (i.e., there is not a unique
solution as predicted by the program). How-
ever, the larger solution for R is always larger
than H, and (R+H_) is always greater than 1.
Therefore when using the larger solution for R
both versions of Eq. (AS5) lead to a negative
value for ¢?’, so d’F in Eq. (A9) is undefined.
Thus, while there are two solutions for R, on-
ly one of these values leads to a real solution
for d'F.

(H,— R)(1 — FA)
FA, (1 — H) ]

H, (1 — FAp)
FA_(1—R— Hp)

] (49)
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