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Abstract

■ Memory can often be triggered by retrieval cues that are
quite different from the originally encoded events, but how dif-
ferent memory processes respond to variations in cue–target
similarity is poorly understood. We begin by presenting simula-
tions using a neurocomputational model of recognition mem-
ory (i.e., the complementary learning systems model), which
proposes that the hippocampus supports recollection of asso-
ciative information whereas the surrounding cortex supports
assessments of item familiarity. The simulations showed that
increases in the similarity between retrieval cues and learned
items led to relatively linear increases in a cortex-based memory
signal but led to steeper and more thresholded increases in the

hippocampal signal. We then tested the predictions of the
model by examining the effects of varying cue–target similarity
in two recognition memory experiments in which participants
studied a list of computer-generated faces and then, at test,
gave confidence and remember/know responses to morphed
faces. In both experiments, as cue–target similarity was in-
creased, familiarity-based recognition increased in a gradual
and relatively linear fashion, whereas recollection showed sig-
nificantly steeper gradients. The results show that recollection
and familiarity exhibit distinct similarity functions in recognition
memory that correspond with predicted retrieval dynamics of
the hippocampus and cortex, respectively. ■

INTRODUCTION

Our ability to retrieve memories for past events in response
to different environmental cues is fundamental to how we
make sense of and interact with the world. However, the
features constituting a retrieval cue rarely match the en-
coded objects or events perfectly. For example, we may
recognize that we have met a person before even if they
have had a haircut since our initial encounter or if the
lighting conditions have dramatically changed the appear-
ance of their face. A core question about how memory
operates then is how similar does a retrieval cue have to
be to the original item before we are able to recognize that
we have encountered it previously? Here, we test predic-
tions based on a neurocomputational memory model that
indicates that increases in cue–target similarity lead to
gradual increases in familiarity but lead to steep increases
in recollection once a recollective threshold is exceeded.

Many current models of long-term memory posit two
underlying processes that serve fundamentally different
yet complementary roles. For example, several recognition
models differentiate between recollection, which is the
retrieval of qualitative information about a study event,
and familiarity, which reflects the global match between
a cue and what was previously learned (Eichenbaum,

Yonelinas, & Ranganath, 2007; Brown & Aggleton, 2001;
Yonelinas, 1994; Jacoby, 1991; Mandler, 1980; Atkinson
& Juola, 1974).
Neurocomputational models such as the complementary

learning systems (CLS) model posit a similar distinction
based on neurophysiological evidence that postulates sepa-
rate memory roles for the hippocampus and surrounding
medial-temporal lobe cortex (MTLc; e.g., Norman&O’Reilly,
2003; O’Reilly & Rudy, 2001; McClelland, McNaughton, &
O’Reilly, 1995; for similar ideas, also see Sherry & Schacter,
1987; O’Keefe & Nadel, 1978; Marr, 1971). In these models,
the hippocampus is assumed to encode associations be-
tween various aspects of a single event, such that when a
subset of those features is subsequently presented, it is
able to pattern complete and retrieve those missing fea-
tures. Importantly, the encoded representations are highly
pattern-separated (i.e., nonoverlapping), and as a con-
sequence, cues that do not closely match the original
item or event will rarely trigger recollection (O’Reilly &
McClelland, 1994). In contrast, the MTLc is thought to
strengthen, via Hebbian learning, associations that are
common across many different events and, therefore,
forms more overlapping, generalized representations. In
this way, cues that are repeated or similar to other en-
coded stimuli are processed or identified more readily
than novel stimuli, and this can be used as a measure of
recency or stimulus familiarity.University of California, Davis
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If, as these computational models predict, the hippo-
campus forms more pattern-separated representations of
events than the cortex, then we can expect that the two
systems should respond very differently to changes in
cue–target similarity. That is, we hypothesized that, at
low levels of similarity (i.e., when tests cues are very dif-
ferent from their corresponding studied items), the hip-
pocampus will rarely pattern complete the studied item,
whereas at high levels of similarity it should do so reli-
ably. Thus, if we were to plot performance as a function
of cue–target similarity, we would expect to see a non-
linear trend characterized by a steep gradient at the
point at which pattern completion becomes viable (for
similar ideas, see Yassa & Stark, 2011). In contrast, the
MTLc, which is predicted by the CLS model to produce
a global match signal (Norman & O’Reilly, 2003), is ex-
pected to behave in a more linear manner with discrimina-
bility increasing more gradually with cue–target similarity.
The similarity functions produced by the hippocampal

and cortical components of the CLS model have not yet
been directly examined, and little is known empirically
about how recollection and familiarity each responds to
variations in cue–target similarity. However, evidence from
human fMRI studies provides some relevant evidence. For
example, Bakker, Kirwan, Miller, and Stark (2008) found
that hippocampal subfield CA3 together with the dentate
gyrus (DG) responds very differently to repeated items
relative to slightly altered items, indicating a steep similar-
ity gradient. Similarly, Lacy, Yassa, Stark, Muftuler, and
Stark (2011) identified noncontinuous transitions in the
same subregion as retrieval cues were incrementally
varied between studied and nonstudied items. And re-
cently, an examination of neural similarity measures has
indicated that, within the hippocampus, subsequent mem-
ory is predicted by greater pattern distinctiveness, whereas
in the surrounding MTLc, subsequent memory is pre-
dicted by greater across-item pattern similarity (LaRocque
et al., 2013).
Whether recollection exhibits a steeper similarity gradi-

ent than familiarity has not been directly tested; however,
there is some indirect evidence to support this hypothesis.
For example, in recognition memory studies, false recog-
nition of nonstudied items has been shown to occur very
rarely when recognition responses are accompanied by re-
ports of conscious recollection (i.e., “remember” reports)
but is quite common for items recognized on the basis of
familiarity (i.e., “knowing” reports; see Yonelinas, 2002, for
a review). However, under conditions in which the re-
trieval cue (e.g., the word “sleep”) is semantically related
to many of the studied items (e.g., “rest,” “nap,” “tired”),
false recognition of the nonstudied retrieval cue often oc-
curs on the basis of recollection (e.g., Norman & Schacter,
1997; Roediger & McDermott, 1995). To the extent that
recollection is comparatively more resistant to false recog-
nition when cues are dissimilar to studied items, the evi-
dence suggests that recollection has a steeper, narrower
similarity gradient than familiarity.

One recent study examined recollection and familiarity
for visual objects using remember/know judgments and
source recognition (Kim & Yassa, 2013), in which lures
had varying degrees of similarity to studied items. Lures
that were highly similar to studied items were more likely
to be identified as old and were more often identified on
the basis of recollection than familiarity. Interestingly,
the number of lures identified as old decreased mono-
tonically with similarity; however, confidence levels were
not recorded so it is unclear whether this trend would
generalize to subjective confidence reports. In addition,
although recollection was reported to have a steeper
similarity gradient than familiarity, the gradients were not
performance-matched so it is difficult to draw strong con-
clusions about the shapes of the two gradients relative to
one another.

In the current paper, we set out to examine the effects
of varying cue–target similarity on recollection and famil-
iarity. We begin by presenting simulations using the CLS
model, in which we characterized and contrasted hip-
pocampal and MTLc similarity functions by probing the
model with test cues that morphed incrementally from
nonstudied to studied items. Our goal was to determine
the extent to which the similarity functions of recollection
and familiarity should differ based on the CLS model’s
predictions and extant evidence suggesting differential
involvement of the hippocampal and MTLc structures
during recollection and familiarity-based memory per-
formance, respectively. The CLS model was selected
because it shares many core assumptions with other
memory models, and it has been directly applied to recog-
nition memory (Elfman, Parks, & Yonelinas, 2008; Norman
& O’Reilly, 2003).

Following the simulations, the results from two item
recognition experiments are presented that examine
how recollection and familiarity change as cue–target
similarity increases to determine if human memory per-
formance is consistent with the CLS model’s predictions of
neural network functioning. Participants studied images of
faces, and similarity was varied at test by parametrically
morphing between novel and studied faces. In the first
experiment, we morphed each face in 10% increments,
from 0% to 100% similarity, and participants gave old/new
confidence ratings at each step, followed by a remember/
know judgment (Tulving, 1985) at the end of the trial. In
the second study, we derived estimates of recollection
and familiarity using participants’ confidence ratings
(Yonelinas, 1994) at different levels of similarity, with each
test item shown at only one level of similarity, rather than
over a series of morphs.

MODEL SIMULATIONS

The aim of the simulations was to determine the predicted
similarity gradients of recollection and familiarity by
examining the effects of varying stimulus similarity on
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hippocampal and MTLc network signals. Each network
was trained on a set of items and then was probed for
item memory using retrieval cues that parametrically
varied from very different to very similar to studied items.
We first examined the similarity gradients of each of the
two networks within single trials and then examined the
similarity functions of the two networks averaged across
items, as is typically done in behavioral studies. Finally,
we combined the outputs of the two networks to de-
termine how overall recognition performance would be
influenced by stimulus similarly.

Methods

The simulations were implemented using the software
package Emergent, version 5 (Aisa, Mingus, & O’Reilly,
2008) that incorporates the Leabra neural network algo-
rithm (O’Reilly & Munakata, 2000). The model’s structure
is based on a widely accepted model of hippocampal ar-
chitecture and a simple approximation of the association
cortex (or MTLc; Hasselmo, 1995; O’Reilly & McClelland,
1994; Rolls, 1989). Layers of units represent different
anatomical regions, and each unit approximates the be-
havior of a group of neurons using a continuous sigmoi-
dal activation function with values ranging between 0 and
1. Connection weights were updated using a conditional
principal components analysis-based Hebbian learning
rule, and competitive inhibition was simulated within
layers using the kWTA rule (O’Reilly & Munakata,
2000). Model parameters were based on previous instan-
tiations of the CLS model (Aisa et al., 2008; Elfman et al.,
2008; Norman & O’Reilly, 2003; O’Reilly & Munakata,
2000) and are included in Tables A1 and A2.

The hippocampal network comprises entorhinal (ERc)
input and output layers, the DG, and layers CA3 and CA1
(see Figure 1, left) and incorporates separate encoding
and retrieval modes. In encoding mode, an input pattern
(described below) is presented to the network at the ERc
input layer. Activation spreads to CA3, both directly and
indirectly via the DG as well as to CA1. Because of strong
competitive inhibition within each layer, activation through-
out the hippocampus is relatively sparse. This is especially
true of the DG, which in turn helps to minimize pattern
overlap in CA3. CA3 has strong within-layer associations
(recurrent collaterals) that help bind together the various
features of an event; however, learning occurs throughout
the network (with the exception of ERc–CA1 projections
which maintain a static mapping; see Norman & O’Reilly,
2003). At retrieval, a cue is presented to the network,
and area CA3 attempts to reactivate—with the aid of its
strengthened associations—the encoded representation.
If successful, activation then spreads to CA1 via weak, dif-
fuse projections. Projections from area CA1 then reinstate
the originally encoded pattern at ERc output. Performance
was calculated as the net match between the activation
pattern at the ERc output layer and the input pattern. We
used this measure as it indicates the quality of retrieval—

that is, which specific features were reactivated—and not
simply the amount of activation. For convenience, we refer
to this measure as “recollection,” but we acknowledge that
recollection is a psychological construct that is likely sup-
ported by the hippocampus but cannot simply be reduced
to it.
The MTLc comprises an input layer—identical to the

hippocampal input—and an association layer (see Figure 1,
right). The input layer projects diffusely to the association
layer. When an item is encoded, connections between
coactive units are strengthened whereas other con-
nections are weakened. At the time of test, when a
studied item is presented, it is associated with a sharpened
representation—that is, a small number of highly active
cortical units and a large number of inactive units—
compared with nonstudied items. MTLc memory perfor-
mance, referred to heuristically as “familiarity,” is equated
with the sharpness or contrast of an active representation
and is measured as the average activation of the 20%
most active units, indicating the limit imposed on acti-
vation by competitive inhibition (using the kWTA rule;
see O’Reilly & Munakata, 2000) and is diagnostic of sharp-
ness, because greater activation of those units is balanced
by a net decrease in activation of the remaining units.
The study and test stimuli (i.e., the input patterns) con-

sisted of 36 slots, with four units per slot. A slot represents
a feature dimension or stimulus attribute (e.g., category,
shape, color) with one active unit per slot. Any two ran-
domly generated patterns overlapped by an average of
25% (referenced as 0 similarity). There were 20 randomly
generated, uncorrelated study items for each of the 20 sim-
ulated subjects. For the test list, 13 cue patterns were gen-
erated for each study item. Each successive cue comprised
an incremental change in cue–target similarity, where the
target refers to the original study item. The first cue was
a randomly generated pattern (0 similarity), and for the
next cue, three slots were overwritten to match the target,
then three more for the next cue, and so on until the cue
and target matched perfectly (a similarity of 1). One pro-
gression of test cues—from 0 to 1 similarity—is referred
to as a single trial. Figure 2 presents a simplified represen-
tation of the stimuli.

Results

Outputs from individual test trials of the hippocampal
and MTLc networks for representative studied and new
item trials are plotted as a function of similarity in Fig-
ure 3A, B. As illustrated in Figure 3A, the hippocampal net-
work produced essentially no recollection signal until a
threshold of similarity was reached and then transitioned
to a strong recollection state. The specific level of similar-
ity at which a given item transitioned into a recollection
state varied across items, and the absolute level of activa-
tion reached differed slightly across trials. Retrieval was
highly accurate in the sense that, when it occurred, the
retrieved representation matched the correct studied
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item. Of the 400 studied items, 191 were correctly recol-
lected; of the 209 that were not, 205 were due to non-
recollection, whereby no stored pattern was reactivated,
and there were only four instances of false recollection,
in which nontarget, studied items were retrieved. Cor-
rect recollection was operationalized as at least a 67%
match between the output and the target pattern and less
than 33% erroneous activation; note that because of the
threshold behavior of the network, these results were
robust to variations in the criteria that was used to define
successful recollection.

The similarity function for the MTLc familiarity model is
presented in Figure 3B. In contrast to the hippocampus,
the MTLc network exhibited relatively linear functions
for studied items, such that activation increased gradually
as cues became more similar to studied items. For new
items, activation remained quite low across the trials.

Looking at single trials, the difference in the similarity
functions of the hippocampus and MTLc is quite dramatic.
Would these differences still be observed when trials are
averaged? To assess this, we examined the averaged
hippocampal and MTLc similarity functions (Figure 3C).

Figure 1. Schematic illustrations of the hippocampus (A) and association cortex (B) of the CLS model. (A) The stimulus item is initially presented
to the entorhinal cortex (EC) input layer as a matrix of features (e.g., colors, shapes, configuration, etc.). Activity spreads to the CA subfields,
directly and indirectly via the DG. Patterns are learned via Hebbian weight changes between coactive units, including recurrent collaterals within
CA3 that help bind the features together. Activity in the DG is relatively sparse because of highly inhibitory interneurons, and this is expected
to facilitate the formation of distinct or pattern-separated memory representations. During retrieval, a test cue is presented to the input layer
of the EC, which activates CA3 if it matches a stored memory. This in turn activates CA1, which converts the retrieved representation back to
its original form at the EC output layer. (B) The association cortex network comprises two layers: the lower-level cortex (which for simplicity is
instantiated in an identical manner to the hippocampal EC layer) and the association cortex. The lower-level cortex projects diffusely throughout
the association cortex. When an item is encoded, connections between coactive units are strengthened, and the other connections are weakened.
In this way, at time of test when a studied item is presented, it will be associated with a sharpened representation (i.e., a small number of highly
active cortical units and a large number of inactive units), compared with nonstudied items.

Figure 2. A simplified
representation of a
study pattern and three
corresponding test patterns
(cues) that vary in similarity
to the study item (target),
from chance to an exact
match (0 to 1 similarity
scores, respectively). Each
row of squares represents
an item feature with the
black square representing
a fully active unit and empty
squares indicating inactivity.
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Averaging across trials, the threshold nature of the recol-
lection function is less obvious because different trials
transitioned at different similarity levels. However, the
figure shows that the recollection similarity gradient was
still steeper than the familiarity gradient. In addition, we
found that the gradient was the same even if we increased
the number of trials averaged over from 80 per level of
similarity to 400. The results suggest that it should be

possible to observe differences in the similarity functions
of recollection and familiarity even when averaging across
trials.
To further characterize the two networks, plots of the

frequency distributions of the recollection and familiarity
scores—shown here for .25, .5, .75, and 1 cue–target
similarity—are presented in Figure 4A, B. These reflect
the hypothetical strength distributions of the two networks.

Figure 3. Simulation results
showing memory strength
for the hippocampus (i.e.,
recollection) and the
association cortex (i.e.,
familiarity) as cue–target
similarity is varied from 0
(chance similarity) to 1
(exact match). Representative
similarity gradients of three
old and three new items from
the hippocampal network
(A) and from the association
cortex (B), as well as average
gradients across trials
(C). Increasing cue–target
similarity leads to steeply
increasing recollection
gradients and shallower more
gradually increasing familiarity
gradients.
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For recollection, at low similarity, there was a large peak
at 0, indicating that most trials did not produce retrieval
of any learned representation. As similarity increased,
the zero-recollection peak diminished whereas a sec-
ond high-strength recollection peak emerged, indicat-
ing accurate recollection. Notably, as the recollection
peak grew, its position along the recollection scale did
not change, indicating that cue–target similarity did not
impact the strength or accuracy of correctly recollected
items.
The strength distributions of the cortical model are

presented in Figure 4B. In contrast to the hippocampal
network, for the cortical network, the mean familiarity
scores were Gaussian-shaped, and the variance remained
fairly constant as cue–target similarity was varied. As ex-
pected, as the test cues became more similar to studied
items, the cortical familiarity signal increased (moved to
the right).
To determine the effect of similarity on overall recog-

nition (i.e., when both networks were allowed to con-
tribute to performance), we generated predicted receiver
operating characteristics (ROCs) by assuming that if
hippocampus-based recollection occurs, it will lead to a
high-confidence recognition response, whereas if recol-
lection does not occur, recognition is based on familiarity
(Yonelinas, 1994, 2001). The predicted ROCs (Figure 4C)
were curved and asymmetrical, similar to those observed
in human recognition memory studies (for a review, see
Yonelinas & Parks, 2007). Additionally, as similarity in-
creased, performance increased and the ROCs moved
upward. Importantly, the y intercept (which tracks recol-
lection) first increased slowly and then more quickly as
similarity increased, reflecting a nonlinear transition. The
point of greatest change in recollection was between

similarity measures of .5 and .75. Note that the precise
point of steepest transition can vary as a function of vari-
ous model parameters like learning rate and stimulus
dimensions. The important point is that the hippocampal/
recollection similarity gradient should be steeper than the
cortical/familiarity gradient, but exactly where the dif-
ference will be maximal is likely to change with different
model parameters.

Discussion

The CLS model simulations demonstrated very different
similarity functions for the hippocampal and MTLc net-
works. For individual test trials, the hippocampus pro-
duced thresholded recollection functions, in which there
was no output activation until a high level of stimulus sim-
ilarity was reached, at which point the network strongly
activated and retrieved the correct study item. In con-
trast, the activity of the MTLc tracked similarity in a more
graded fashion, such that familiarity for old items in-
creased gradually as similarity increased. The differences
in the steepness of the recollection and familiarity similar-
ity functions were reduced when averaged across items
because of the variability in the location of the recollection
threshold for different items, but the average recollection
gradient was nonetheless steeper than that produced by
familiarity.

Is the difference in the performance of the hippocampal
and cortical networks a natural consequence of their neuro-
anatomical structures, or is it just a particular parameter
setting that caused the gradient differences? To answer this
question, we systematically searched the model parameter
space to see if there was any one parameter or structural
property that could account for the observed differences

Figure 4. Simulated strength distributions for recollection and familiarity and their resulting ROCs. (A) Histograms of recollection scores at
25%, 50%, 75%, and 100% cue–target similarity, for the hippocampal network. At low levels of cue–target similarity, none of the items led to
recollection (i.e., for all items R = 0), but as similarity increased, an increasing number of items shifted from the nonrecollected distribution
(R = 0) to a high level of recollection strength (e.g., R > .75). (B) Histograms of familiarity scores for the association cortex network. At low levels
of cue–target similarity items are associated with low levels of familiarity and are normally distributed, but as similarity increases the mean of
the familiarity distribution increases. (C) Predicted ROCs for each level of target–lure similarity assuming that recognition is based on recollection
or on familiarity when recollection fails. The ROCs become more curved as similarity increases, indicating that familiarity is increasing, and the
y-intercept increases, indicating that recollection is increasing.
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in similarity gradients. We could find no evidence that there
was any “threshold parameter”or a single structural property
of the model that was responsible for the hippocampal/cor-
tical difference we observed. Rather, it appears that the
threshold nature of the model is an emergent property of
several of the unique aspects of the hippocampal architec-
ture that are not present in the cortex. To explore which
model properties are most critical in producing the different
types of outputs, we took two approaches. First, we started
with the current hippocampal model that produced the
threshold output and then systematically reduced or re-
moved parameters that might have been critical for produc-
ing the threshold. Second, we started with a cortical model
and systematically added parameters or structures tomake it
more similar to the hippocampalmodel to see if any of those
would lead the model to produce a thresholded output. For
both approaches, we examined five core parameters that dif-
ferentiate the hippocampal and cortical networks, including:
(1) recurrent connectivity inCA3, (2)DGdetonator synapses
activating CA3, (3) lateral inhibition in DG and CA3, (4) pro-
jection strength fromCA3 to CA1, and (5) learning rate. Each
of these parameters had an impact on overall network per-
formance. However, there was no circumstance that we
could identify in which decreasing or removing a parameter
from the hippocampal model led it to produce a monotonic
output like the cortex, norwas there a case inwhich adding a
single parameter to the cortical model led it to produce the
threshold pattern observed in the hippocampal model. On
the basis of this, we conclude that the threshold and contin-
uous properties of the hippocampus andMTLc, respectively,
are emergent properties of the neuroanatomical architec-
ture of these different regions and not simply a difference
in any type of a strength or threshold parameter.

On the basis of these simulation results, we predicted
that, in humans, comparable similarity functions for esti-
mates of recollection and familiarity should be observed
in recognition memory tests. That is, recollection should
exhibit a nonlinear function with a steeper gradient than

familiarity, familiarity should be comparatively more
linear, and this should be evident at both the aggregate
and individual trial level.

HUMAN RECOGNITION MEMORY

We set out to test whether the contrasting similarity func-
tions observed in the model simulations would be de-
tected in human behavioral tests of item recognition.
Participants studied lists of computer-generated face im-
ages, and then recognition memory was tested using items
that were manipulated to have varying degrees of similarity
to studied items. In Experiment 1, each test item was grad-
ually morphed from a generic, nonstudied face to either a
studied face or a nonstudied face. Recognition confidence
was assessed at each level of stimulus similarity, and then,
once the target face was presented, participants made a
“remember” response if the face was recollected and a
“know” response if the face was recognized as old on the
basis of familiarity without recollection. By doing this, it
was possible to measure recognition confidence as a func-
tion of stimulus similarity, separately for items that were
ultimately recollected or familiar. Experiment 2 was simi-
lar to Experiment 1, except that each test face was only
tested once at a random morph level, and there were no
remember/know judgments.

Experiment 1

After encoding a list of faces, recognition was tested for
a set of faces that were incrementally morphed from a
generic, prototypical face to a studied face or a new
face (see Figure 5). We expected that, for trials in which
participants reported recollecting the face, there would
tend to be a large step increase in confidence at some
point as the face morphed into an old face. In contrast,
for trials in which participants reported only a sense of

Figure 5. Stimuli for Experiment 1. Participants were presented with a series of distinct faces at study. Test trials always started with the same
prototype face (first of the cues, shown here). Over a series of eleven presentations, participants gave old–new confidence judgments—ranging
from 1 (sure new) to 9 (sure old )—as the prototype face was morphed into a studied face (target) or a new face (not shown). At the end of
each trial, participants gave a “remember,” “know,” or “new” judgment.
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familiarity, we expected to see a more graded increase in
confidence.

Methods

Participants. Twenty-eight undergraduate psychology
students (mean age = 20 years) participated in the experi-
ment for course credit. Four participants were excluded
because of poor performance (i.e., d0 < .5).

Materials. Forty-eight unique faces (see Figure 5) were
computer-generated (FaceGen Modeler, version 3.4,
2009; Singular Inversions, Inc., Toronto, Canada). Each
face was generated beginning with the same plain proto-
type that was constructed by centering all available fea-
ture parameters. Unique faces were then constructed by
pseudorandomly shifting the parameters so that faces
would be as distinct as possible, while remaining realistic.
The parameters were additionally controlled such that all
faces were approximately equidistant to the prototype.
The images were 240 × 240 pixels in size and were pre-
sented with a black background in the center of the screen.

Design and procedure. The study phase consisted of
24 unique faces presented one at a time. Participants
were instructed to try to remember each face for a later
test. A face first appeared by itself for 5 sec. Then, with
the face still visible, participants were prompted to rate
their impression on three attributes using a 4-point scale.
The attributes were unpleasant–pleasant, republican–
democrat, and shy–outgoing; for example, 1 = very
unpleasant, 2 = mildly unpleasant, 3 = mildly pleasant,
and 4 = very pleasant. Each scale appeared for 5 sec.
There was a 400-msec ISI.
The test phase comprised the 24 studied faces and

24 new faces, presented in random order. Each trial be-
gan with the prototype face (the leftmost test cue in
Figure 5) and was followed by 10 presentations, incre-
mentally morphing into either a studied face or a new
face. Participants were instructed to rate each face on a
9-point scale, ranging from 1 (sure new) to 5 (no idea)
to 9 (sure old ). Participants were instructed that their
first response in each trial should always be “5,” because
the first presentation contained no information about
whether the face was studied or new. Responses were
self-paced, and each image remained on the screen until
the participant made a response. At the end of each trial,
participants were instructed to rate their memory as
“remember” if they remembered studying the face (i.e.,
if they could retrieve some qualitative information about
the event in which the face was initially studied), “know”
if the face was only familiar (i.e., the face was studied but
they were unable recollect any qualitative information
about the study event), or “new” if they thought it was
a new face (Yonelinas, 2001).

Results

Figure 6A presents the normalized mean recognition
confidence for old and new faces as cue–target similarity
was varied from 0 to 1. Old item performance is plotted
separately for items receiving “remember,” “know,” and
“new” judgments, whereas new item performance is
plotted for the items receiving a “new” response (there
were too few false alarms to plot remember or know
responses). The solid lines represent sigmoid functions
that were fit to the observed data.

An examination of Figure 6A shows that as cue–target
similarity increased, recognition confidence increased
for studied items that received “remember” and “know”
responses. Also, the average confidence of the “remem-
ber” responses reached a higher level on average that did
the “know” responses. Conversely, for studied items that
were not recognized, confidence gradually decreased.
A similar pattern can be seen for new items that were
correctly recognized as new.

Curve fits. To determine whether the shapes of the
similarity functions were different for “remember” and
“know” responses, we fit the observed responses to logis-
tic (sigmoid) functions. Participants’ confidence values
were converted to z scores to account for individual dif-
ferences in response bias. Group-level trends were then
plotted for each process judgment (“remember,” “know,”
and “new”) and fit to a logistic function, implemented
with the following four-parameter equation:

f tð Þ ¼ zmin þ Δz
1þ e−m t−tmð Þ=Δz (1)

where t is cue–target similarity, zmin represents the lower
limit of z confidence, Δz is the net change in z con-
fidence, m is the maximum slope, and tm is the cor-
responding point along the x axis. The observed data
points were weighted by frequency of responses, and
curves were fit using least squares minimization. The
models were unconstrained so as to be both flexible and
theory agnostic. Mean group-level data points and the
minimized fits are presented in Figure 6A (left). The logis-
tic function accounted for 91% of the variance in “remem-
ber” data, R2 = .908, F(4, 236) = 1142.623, p < .001, and
73% of the variance in “know” data, R2 = .729, F(4, 226) =
273.950, p < .001.

We set out to determine whether “remember” and
“know” trends arose from independent distributions and
were not simply an arbitrary categorization based on mem-
ory strength. Parametric differences were explored using
sum of squares reduction tests as follows. To start with,
a combined “remember” and “know” eight-parameter
(full) model was fit to both response sets simultaneously,
represented by the following equation:

F tð Þr;k ¼ f tð Þproc¼r þ f tð Þproc¼k (2)
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where r is “remember” and k is “know,” proc is the pro-
cess (remember or know) for a given data point and
f(t) is the function shown in Equation 1 but with param-
eters that are process specific. The full model accounted
for 88% of total variance, R2 = .879, F(8, 226) = 273.950,
p < .001. A t test revealed a significant difference in the
slope parameters for the two processes, with “remember”
(M = 5.095, SE = 0.316) having a steeper maximum gradi-
ent than “know” (M = 2.349, SE = 0.257), t(462) = 6.730,
p < .001. Likewise, there was a significant difference in
maximum confidence, with a higher zmax estimate for “re-

member” (M=2.173, SE=0.069) than “know” (M=1.384,
SE = 0.195), t(462) = 3.812, p < .001. The other param-
eters, zmin and tm, did not differ significantly between
processes. To determine whether slope was an indepen-
dently significant factor in differentiating the two pro-
cesses, the eight-parameter model was compared with a
reduced, seven-parameter model in which the same slope
parameter was used for both processes. The reduced
model accounted for significantly less variance than the
full model, F(1, 462) = 28.541, p < .001. In summary, the
analysis indicates that the shape of the “remember” and

Figure 6. Recognition memory results from Experiment 1. (A) Normalized recognition confidence measures for items receiving a “remember,”
“know,” or “new” response as cue–target similarity was varied from 0 to 1. The solid lines represent sigmoid functions that were fit to the observed
data. The panel on the left presents recognition performance for all of the test trials and shows that, as cue–target similarity increased, the confidence
ratings for both remember and know trials increased, with remember trials reaching a higher level of confidence and exhibiting a steeper slope
than familiarity trials. In contrast, new items and misses led to increasingly confident new responses (i.e., negative values). The panel on the right
shows the same results for a subset of “remember” and “know” trials that were matched for final confidence ratings (for “remember,” z < 3, and
for “know,” z > 1.7) and indicates that recollection exhibited a steeper similarity gradient than familiarity, even when overall confidence was
controlled. (B) Quantifying the steepness of the recollection and familiarity similarity gradients. The left panel presents the average point at which
the “remember” and “know” trials departed from zero memory confidence and the average point at which they reached their maximum level
of confidence. The figure shows that the “remember” trials that reached a maximum confidence of 4 exhibited a steeper slope than the “know”
trials that reached maximum confidence levels of 4, 3, or 2. There were too few “remember” trials that ended at levels of 3 or 2 to plot. The figure
shows aggregate rather subject-level measures, so error bars are not included. The right panel presents the results of a “within-subject” analysis
comparing mean slope estimates with ±1 SEM, in which the slope was measured for each trial. The results of the aggregate and the single trial
analyses indicate that recollection exhibited a steeper similarity gradient than familiarity.
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“know” functions were statistically different, evenwhen one
accounts for differences in the final level of performance.
Critically, the recollection gradient was steeper than the
familiarity gradient, in line with the predictions of the
CLS model.

Matched performance curve fits. To further verify that
the shapes of the “remember” and “know” similarity func-
tions were different, we conducted analyses in which we
controlled for recognition memory confidence. That is,
we examined “remember” and “know” trials that were
approximately equal in final z confidence, thus matching
for memory strength. Selecting “remember” trials with
final z confidence less than 3 (M = 2.085, SD = 0.562)
and “know” trials with z-confidence greater than 1.7
(M = 2.008, SD = 0.319) resulted in the most inclusive
data set while maintaining a statistically nonsignificant dif-
ference in final z confidence, t(168.526) = 1.416, p > .1
(equal variances not assumed). The average similarity
functions for the “remember” and “know” responses with
matched confidence are presented in Figure 6A (right).
Separate fits of the logistic function accounted for 91%
of the variance in “remember” data, R2 = .906, F(4,
226) = 1076.036, p < .001, and 88% of the variance in
“know” data, R2 = .875, F(4, 166) = 616.392, p < .001.
The full eight-parameter model accounted for a signifi-
cant amount of total variance, R2 = .906, F(4, 226) =
1076.036, p < .001. Importantly, a significant difference
was evident between the slope (m) parameters for “re-
member” (M = 5.034, SE = 0.285) and “know” (M =
3.463, SE = 0.351), t(462) = 3.476, p < .001, and there
were no other significant differences. Also, because the
slope was the only parameter to show a significant effect,
the model reduction procedure was unnecessary. Thus,
when overall level of recognition confidence was held
constant, the slope of the recollection gradient was
steeper than that of the familiarity gradient.

Additional slope measures. The function-fitting analyses
above were limited to group-level data; that is, there were
too few trials to reliably fit separate continuous functions
for every participant. For additional analyses, we explored
simpler metrics that were obtainable at the single-trial
level for each participant. Specifically, we tested whether
(a) confidence increased at a faster rate in “remember”
trials than in “know” trials and (b) “remember” trials
exhibited a larger maximum “step” in confidence when
matching for performance.
For the first test, each trial was scored on threemetrics: t0,

the point in cue–target similarity before confidence changed
from “unsure”; t1, the point at which confidence ceased to
change; and Δc, the net change in confidence. Figure 6B
(left) shows summaries of the metrics aggregated over
all trials. The figure compares matched performance (con-
fidence level = 4) “remember” and “know” trials, and
“know” trials that ended at confidence levels of 3 and 2.

Average slopes (Δc/t1 − t0) were also measured for each
trial and are summarized in the right figure. There were
insufficient trials in each category of response to run typ-
ical repeated-measures analyses, so the comparisons were
performed using a linear mixed model design. For “re-
member” versus “know” trials ending at c = 4, par-
ticipants reached maximum confidence (t1) significantly
earlier for “remember” trials (M = 0.789, SE = 0.185) than
for “know” trials (M = 0.934, SE = 0.191), t(12.904) =
4.910, p < .001, and there was no significant difference
in the points at which confidence first began to change
(t0). Average slopes were also greater for “remember”
trials (M = 13.57, SE = 1.14) than for “know” trials (M =
9.60, SE = 1.21), t(11.541) = 2.890, p = .014. In contrast,
average slopes did not vary significantly for “know” trials
across different levels of final confidence F(2, 11.920) =
0.748, p = .494. The results indicate that recollection
trials generally did exhibit steeper similarity gradients that
the familiarity trials.

For the final test, we compared the maximum step
size—that is, the biggest confidence shift between any
two adjacent cue–target similarity points within a trial—
between processes. Using the mixed model design, par-
ticipants exhibited larger maximum step sizes at matched
performance (c = 4) for “remember” trials (M = 2.112,
SE = 0.114) than “know” trials (M = 1.684, SE = 0.184),
t(10.430) = 2.534, p = .029. Additionally, the maximum
step size for “familiarity” did not vary significantly as a
function of final confidence, F(2, 11.920) = 0.748, p =
.494. In summary, the single trial analysis further verified
that the “remember” trials exhibited steeper similarity
gradients than the “knowing” trials.

Discussion

The results validated the prediction of the CLS model
in showing that recollection exhibited a steeper similarity
gradient than familiarity. As test stimuli were morphed to
studied faces, recognition confidence increased more
gradually for items recognized on the basis of familiarity
than those recognized on the basis of recollection. This
pattern was observed when fitting the average similarity
gradients using all trials and when excluding trials to
control for differences in overall level of performance.
In addition, single trial analysis indicated that recollection
trials were associated with steeper similarity functions
than familiarity trials.

One question that the current results do not answer,
however, is whether the same pattern of results would
be observed under conditions in which similarity was
not incrementally morphed within single trials. That is,
perhaps the similarity functions were affected by having
each test item morph across contiguous presentations
within a single trial. To test the generalizability of the
results from Experiment 1, we conducted another exper-
iment in which each test item was only tested once and
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cue–target similarity was varied across items. In addi-
tion, the results of Experiment 1 utilized the remember/
know procedure to separate recollection and familiarity-
based trials. To determine whether the results generalize
to another measurement procedure, the second experi-
ment includes a sufficiently large number of trials to sup-
port an ROC analysis; on the basis of the ROC shape, we
are able to estimate recollection and familiarity (Yonelinas,
1994).

Experiment 2

Experiment 2 was similar to Experiment 1 except that
participants studied a list of faces and then at test were
presented with a random mixture of faces, each appear-
ing once, that varied in cue–target similarity between .4,
.6, .8, and 1. On the basis of the confidence responses,
we plotted ROC curves, which were used to derive esti-
mates of recollection and familiarity for each participant
and at each level of cue–target similarity. Similarity gradi-
ents for recollection and familiarity were then contrasted
to determine if recollection exhibited a steeper gradient
than familiarity.

Methods

Participants and materials. Twenty undergraduate
psychology students (mean age = 20 years) participated
in the experiment for course credit. One participant was
excluded for using only two of the response keys. For the
materials, 560 unique faces were created using the same
method described in Experiment 1.

Design and procedure. Each session comprised 16
study–test blocks. In each study phase, participants studied
10 unique faces that appeared for 5 sec, with a 0.5 sec ISI.
To aid encoding, participants were required to guess the
ethnicity of each face, selecting from Asian, European,
African, and Middle-Eastern. The study list length and
presentation durations were selected to avoid floor and
ceiling levels of performance. For each test phase, each
of the faces from the prior study phase was morphed
with a unique, novel face to create one of four possible
levels of cue–target similarity of .4, .6, .8, or 1. Each studied
face appeared only once at test, at one of those similarity
levels—10 faces in total—mixed with 10 novel faces.
Participants were instructed to rate each face on a 6-point
scale, from 1 (sure new) to 6 (sure old). The test phase was
self-paced, and there was a 10-sec rest period between
blocks.

Results

Average ROCs along with dual process signal detection
(DPSD; Yonelinas, 2002) model fits were plotted for each

level of cue–target similarity (Figure 7, left). An examina-
tion of the ROCs shows that they were in line with what
was expected on the basis of the CLS simulations (com-
pare to Figure 4C). That is, the ROCs moved upward as
similarity increased. Moreover, the y intercept increased
most noticeably at the middle of the similarity manipula-
tion (between .6 and .8) and less so earlier (.4 to .6) and
later (.8 to 1) on the similarity scale. This pattern is
consistent with a dramatic increase in recollection in
the middle of the similarity manipulation.
To compare the effects of cue–target similarity on rec-

ollection and familiarity, we examined the recollection
and familiarity estimates obtained from the DPSD model
fits (Figure 7, right). Familiarity exhibited a relatively linear
function that increased gradually as stimulus similarity
increased, whereas recollection exhibited a steeper gradi-
ent. The observed gradients are consistent with the model
predictions (see Figure 3C) and converge with the results
of Experiment 1 (see Figure 6).
To quantify these differences, the ROCs were simulta-

neously fit to a single model containing a logistic function
for recollection and another logistic function for famil-
iarity. The model fits were constrained to have x and y
intercepts of zero, corresponding to an assumption of
zero discriminability at zero cue–target similarity. The
model was fit to each participant’s data to obtain param-
eter estimates for within-participant tests. To ensure the
parameters for recollection and familiarity were com-
parable, predicted values were converted to represent
proportions of the maximum value (i.e., the predicted val-
ue at cue–target similarity of 1). Participants had a greater
slope on average for recollection (M = 4.876, SD = 4.069)
than for familiarity (M = 1.780, SD = 0.853), t(18) =
3.196, p = .003 (one-tailed), verifying that recollection
had a steeper similarity gradient than familiarity. Note that
we report one-tailed tests here because the direction of
the effect was predicted by the simulations. In contrast,
Experiment 1 wasmore exploratory sowe exercised greater
caution in our predictions.
In addition, the inflection point—where on the simi-

larity scale the slope reached maximum steepness—
occurred at higher levels of similarity for recollection
(M = 0.895, SD = 0.457), than for familiarity (M =
0.465, SD = 0.271), t(18) = 3.027, p = .004 (one-tailed),
suggesting that recollection occurred over a smaller
range of similarity levels than did familiarity. Further
supporting the notion that recollection occurs over a
narrower range, an examination of Figure 7 indicates
that at low levels of cue–target similarity (left side of
the figure), familiarity was beginning to show an in-
creased response to more similar items whereas recol-
lection estimates remained close to zero until similarity
was much greater. For example, at a similarity of .4, esti-
mates of familiarity (d0) were on average 35.7% (SD =
17.9%) ofmaximum familiarity (at similarity of 1) compared
with 14.3% (SD = 14.4%) for recollection, t(18) = 3.610,
p = .001 (one-tailed).
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Discussion

ROC plots were constructed from recognition confidence
responses at varying levels of cue–target similarity, which
were then fit to the DPSD model to obtain a range of
recollection and familiarity estimates. The results were
consistent with the remember/know results of the first
experiment and the CLS model simulations, showing
relatively steep, nonlinear recollection-based functions in
the hippocampus compared with more linear familiarity-
based functions in the MTLc. In addition to confirming
that recollection had a significantly steeper gradient than
familiarity, the analysis showed that familiarity had a greater
impact on recognition at low levels of similarity compared
with recollection.
The results of the current study are similar to a recent

report that examined the effects of varying the cue–
target similarity for photos on recognition confidence
judgments (Pustina, Gizewski, Forsting, Daum, & Suchan,
2012). The similarity gradients of recollection and famil-
iarity were not quantified as continuous functions, so a
direct comparison with the current results is not possible,
but their results indicated that familiarity estimates de-
creased approximately linearly with decreasing cue–target
similarity, compared with recollection, which appeared
to exhibit a more nonlinear response and were thus in
general agreement with the results observed in the current
study.
The average ROCs (Figure 7A) also closely matched the

simulated ROCs (Figure 4C) from the CLS model. That is,
familiarity—indicated by the level of ROC curvature—
increased gradually with similarity, consistent with the
MTLc signal. In contrast, recollection—indicated by the

y intercept—exhibited a nonlinear change, increasing
more dramatically at middle similarity intervals, consistent
with the hippocampal signals.

GENERAL DISCUSSION

The current study was conducted to test how differences
in the similarity between retrieval cues and previously
studied items affect the processes of recollection and
familiarity in human recognition memory. We first con-
ducted simulations with the CLS model (Norman &
O’Reilly, 2003), which instantiates separate hippocampal
and MTLc networks. The networks were trained on a list
of stimulus patterns, and at test the patterns were varied
incrementally from new to old. Over single trials, the
hippocampal network produced discrete transitions
from no retrieval to accurate, pattern-completed retrieval
when stimuli reached a critical threshold of similarity to
the original item. In contrast, the MTLc produced more
linear, continuous transitions, from low to high familiarity
(i.e., pattern sharpness), for studied items. The networks
also demonstrated markedly different functions even
when performance was averaged over many trials. The
hippocampus produced a nonlinear, sigmoidal function
with a comparatively steep slope, whereas the MTLc
produced a more linear function, consistent with a global-
match signal.

Two recognition experiments were conducted to test
whether the similarity functions produced in the simula-
tions were predictive of human recollection and familiar-
ity. The first experiment examined performance within
single trials by observing responses at multiple points

Figure 7. Experiment 2 results showing ROC curves of aggregated subject confidence responses at .4, .6, .8, and 1 cue–target similarity, indicated
by the discrete markers, and corresponding DPSD curve fits, indicated by continuous lines (left) and recollection and familiarity estimates based
on curve fits at each similarity level (right). Increases in cue–target similarity led to a relatively linear increase in familiarity and a steeper increase
in recollection.
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of similarity and used remember/know responses as
indices of recollection and familiarity. The second ex-
periment tested only a single, random similarity position
for each item, and recollection and familiarity were esti-
mated from confidence-based ROCs. The results from
the two behavioral experiments were consistent with
the CLS model simulations. Namely, the experiments
produced relatively steep, nonlinear similarity gradients
for recollection that correspond to the predictions of
the hippocampal network and more linear, continuous
functions for familiarity that are consistent with the MTLc
network.

Relating the Current Findings to Previous Research

The current findings support a growing literature that
ties the hippocampus to recollection-based recognition
memory and the MTLc to familiarity-based recognition
(Eichenbaum et al., 2007; Montaldi, Spencer, Roberts,
& Mayes, 2006; Yonelinas, Otten, Shaw, & Rugg, 2005;
Ranganath et al., 2004). Importantly, although some
previous behavioral studies have investigated the effects
of different levels of cue–target similarity on memory
performance (e.g., Kim & Yassa, 2013; Pustina et al.,
2012; Preminger, Blumenfeld, Sagi, & Tsodyks, 2009),
they did not estimate similarity functions that con-
trasted recollection and familiarity. Thus, the current
findings provide a critical direct test of the hypothesis
that the similarity gradients of recollection and familiarity
differ.

The current study bears some similarity to studies of
false recognition, in which individuals must discriminate
between studied items and related lures. Such studies
have typically shown that the probability of nonstudied
items being falsely recollected is rare, compared with
the probability that they are falsely recognized on the
basis of familiarity. However, when new items are high
associates of the studied items, both processes can lead
to high levels of false recognition (for a review, see
Yonelinas, 2002). The present findings are broadly con-
sistent with this research in the sense that when test
items were very different from targets (i.e., low similarity),
lures rarely led to recollection responses, whereas when
test items became very similar to studied items, these
items often led to recollection.

A core feature of the CLS model is that the hippocam-
pus performs pattern separation, thereby making similar
items less prone to interference. In recent behavioral
experiments, Kim and Yassa (2013) showed that individ-
uals will often identify, on the basis of recollection, lure
items that are similar to studied items, thus showing that
recollection can occur in the absence of pattern separa-
tion. Indeed, past research has shown that pattern sepa-
ration is not without practical limits (Elfman et al., 2008),
and the current results support this by showing that
recollection often occurred when items differed from

the studied targets. Thus, it is important to bear in mind
that, although it is helpful to examine recollection through
the guise of computational mechanisms such as pat-
tern separation and pattern completion, the relationship
between recollection and these mechanisms is a complex
one.
In a related paradigm, Preminger et al. (2009) showed

that memory attractors (stable neural representations)
can be manipulated by gradually morphing images of
learned faces from a “source” to a “target,” over a period
of weeks. When the morphing procedure was completed,
target faces were often misidentified as source items,
indicating that the original attractor had “broadened” to
accommodate the new target information. Although the
authors did not differentiate between recollection and
familiarity, the findings suggest that similarity gradients
are to some extent malleable. Thus, an interesting chal-
lenge for future research would be to determine whether
the attractors associated with recollection and familiar-
ity are differentially affected by this gradual remapping
procedure.
The current findings are broadly consistent with a num-

ber of human fMRI studies in which memory retrieval was
found to be associated with discrete activation states in the
hippocampus and more continuous signals in surrounding
MTLc areas. For example, in tests of item and associative
recognition, hippocampal activation is differentially re-
lated to accurate, high-confidence responses to studied
items but shows no such trend across lower confidence
responses (e.g., Daselaar, Fleck, & Cabeza, 2006; Montaldi
et al., 2006), whereas activation in the perirhinal cortex and
surrounding MTLc structures tracks more linearly with
confidence responses (Daselaar et al., 2006; Yonelinas
et al., 2005; Ranganath et al., 2004). However, a limitation
of this comparison is that imaging studies typically have
not investigated how the neural activation associated with
recollection and familiarity varies with objective similarity
changes. Thus, an interesting challenge for future research
would be to determine whether the hippocampus and
perirhinal cortex show step-like or graded activation
similarity functions as items are gradually morphed from
new to old.
Similarity manipulations have been used in a number

of rodent studies in which hippocampal neurons were
recorded as a surrounding environment was gradually
morphed between two prior exposed shapes (e.g., a
circle and a square). Although we cannot assert a link
between single cell firing patterns and human recognition
similarity functions, attractor dynamics that have been
identified in the hippocampus—such as an abrupt shift
in the spatial firing locations of neurons near the mid-
point of the morph (e.g., Colgin et al., 2010; Wills, Lever,
Cacucci, Burgess, & O’Keefe, 2005)—are nonetheless
consistent with the discrete activation states observed in
the current hippocampal model simulations as similarity
was varied, and likewise, the steep gradient observed in
recollection part-way along the similarity scale.
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Could a Single Process Model Account for
the Findings?

The CLS model assumes that recognition memory is the
result of two neuroanatomically dissociable networks
and is therefore theoretically aligned with dual process
memory models (e.g., DPSD; see Yonelinas, 2002). The
existing evidence for the contribution of two processes
in recognition memory is quite extensive (for reviews,
see Diana, Reder, Arndt, & Park, 2006; Yonelinas, 2002;
but see Parks & Yonelinas, 2007; Wixted, 2007). Never-
theless, it is useful to ask whether the current results
might also arise naturally from a single-process account
of memory. Although the current experiments were not
designed to address this issue, they do present a number
of challenges for any such approach. For example, in
Experiment 1 we observed distinct similarity gradients
for recollection and familiarity-based responses. That is,
direct statistical tests indicated that a two-parameter
account was preferred over the single parameter account.
Importantly, our statistical tests showed that even when
accounting for the one less degree of freedom of the sin-
gle-parameter model, the single-parameter model
was rejected when compared with the two-parameter
model. It might be argued, based on the initial analysis,
that the higher levels of confidence associated with recol-
lection trials compared with familiarity trials complicated
the comparison; however, a direct comparison of the
similarity gradients when overall performance was con-
trolled for indicated that the two-parameter model was
still preferred. In addition, in Experiment 2, direct model
contrasts indicated that a model with two slope param-
eters provided a significantly better fit than a model with
only one slope parameter.
Nonetheless, it is important to point out that, al-

though the results verified the a priori predictions of
the dual process model, it may be possible to develop
alternative single process models that provide a post
hoc account of the data. For example, a single memory
system that represents both item information and asso-
ciative information might be able to produce dissocia-
tions if one assumes that recognition reflects a mixture
of both associative and item information. Although,
whether such a model would naturally predict differ-
ences in similarity gradients is unclear. Moreover, whether
it could naturally account for the specific differences in
the shapes of the ROCs that were observed in Experi-
ment 3 is also unknown. Critically, the ROCs did not
simply indicate a monotonic increase in discriminability,
but rather, the intercepts (i.e., recollection) increased
most dramatically around the middle of the similarity
scale.

Computational Insights and Predictions

The current simulation work did not set out to explore in
detail the performance characteristics of individual layers

within the networks. However, it is interesting to note
that the layers making up the hippocampus, which in-
clude DG/CA3 and CA1, have quite different attributes.
By itself, the architecture of CA1 is quite similar to the
MTLc model in the sense that it has less lateral inhibition
than the DG or CA3 (as it is instantiated in the current
model). That is, it supports graded states of activation
and so we might expect to see steeper similarity gradi-
ents in the DG/CA3 than in CA1. However, results from
some related simulation work (Elfman, Aly, & Yonelinas,
2014) suggest that the story about hippocampal subfields
may be somewhat more complicated. Although we do
not go into such details in this paper, we would suggest
that the behavior of CA1 is largely dependent on task
demands. For example, in an experiment in which the
hippocampus is probed only with related lures, we might
expect a linear relationship in CA1 that reflects global
match (if it happens that CA3 is always pattern complet-
ing), whereas in an experiment with unrelated lures, one
might expect more thresholded performance resulting
from a marked drop in activation from CA3 for many
items. Additional factors such as hypothesized encode
and retrieve phases (e.g., Hasselmo, Bodelon, & Wyble,
2002) further complicate the picture, making this an
interesting topic for future research.

The behavioral experiments show that recollection
and familiarity have different similarity gradients for im-
ages of faces. However, the CLS model is agnostic about
the types of materials that give rise to these similarity
gradients, so a reasonable prediction is that the current
effects should generalize across different materials and
modalities. Future studies that examine the effects of
similarity using other stimulus classes are needed to test
this prediction.

Another interesting aspect of the simulations is that
the steeper recollection gradient of the hippocampal net-
work is an emergent—or at least, cumulative—property
of the entire network architecture. That is, attenuating
or eliminating critical architectural features—such as
the recurrent CA3 projections or the detonator cells of
the DG—did not result in monotonic output gradients
that are comparable to the cortical network. Whether
this is true of the human hippocampus is a challenging
question but could potentially be addressed with animal
lesion studies.

Limitations

The current behavioral findings show that at different
levels of similarity, recollection, and familiarity produce
different retrieval states that are predicted by their respec-
tive similarity functions. However, how the two processes
arrive at their respective states is another question. That
is, when the networks that underlie these processes are
presented with a retrieval cue, there is a progression of
activation states (i.e., a “trajectory”) that ultimately leads
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to a stable attractor pattern (i.e., a local minimum). In
other words, when a partial cue triggers activation in a
memory network, if the resulting pattern falls within a
basin of attraction, that pattern will “descend” the basin
towards a final, fully retrieved (i.e., pattern-completed)
memory. Capturing this descent through behavioral ob-
servations would likely prove difficult, not least because
of the short durations over which retrieval occurs (i.e., in-
dividuals can perform effectively with a stimulus–response
deadline under 1000 msec; Yonelinas, 2002). Note that
there is some evidence of attractor dynamics over brief
timescales in animal studies (for a review, see Daelli &
Treves, 2010), and in a recent study, when rodents were
exposed to a changed environment, a brief period of com-
petitive flickering was observed in hippocampal subfield
CA3 as activation quickly shifted from a neuronal en-
semble associated with the old environment to a new
ensemble ( Jezek, Henriksen, Treves, Moser, & Moser,
2011). Examining these short timescale dynamics in
humans, both behaviorally and biologically, will be a
challenge for future research.

Another question of interest is whether the neocortical
and hippocampal networks interact with one another in
a way that affects their respective functioning. In the
current research, we modeled the two networks sepa-
rately and produced simulated recognition ROCs by
combining only their output measures. However, we
ran some additional simulations in which we structurally
combined the two networks and found that this had the
effect of bolstering hippocampal performance. In par-
ticular, at low levels of similarity, the familiarity signal
sometimes “nudged” hippocampal activation toward the
encoded pattern. Further work on a combined model
may yield other interesting predictions.

Conclusions

In this paper, we explored the similarity functions of
recollection and familiarity and found the two processes
to produce markedly different gradients. The findings
were consistent with the predictions of a popular com-
putational model of the hippocampus and MTLc, indi-
cating that recollection, which is dependent on the
hippocampus, has steep, nonlinear similarity functions,
whereas familiarity, which is related to the MTLc and
association cortex, has wider and more linear gradients.
The current work represents an important step in
validating the predictions of current computational
models and characterizing a core aspect of memory
performance.

APPENDIX: NETWORK PARAMETERS

The following notes are a selective description of the
rules and parameters used in the model simulations.
Table A1 shows each layer size (i.e., number of units)
and percentage of activity determined by the k-winners-
take-all (Norman & O’Reilly, 2003). Table A2 shows the
properties of the main projections, including the mean
initial weight strengths (Mean), variances of the weight
distribution (Var), relative strengths of the projections
during encoding (Scale enc) and retrieval (Scale retr),
and the proportions of receiving units that each sending
unit is connected to (% Con).

Table A1. Layer Sizes and Activity Levels

Layer/Area Units Activity (%)

Hippocampus

EC (in/out) 144 25.0

DG 1600 1.0

Area CA3 480 3.8

Area CA1 384 9.4

Neocortex

Lower-level cortex (Input) 144 25.0

Association/MTLc 400 20.0

in/out = input and output layers, respectively.

Table A2. Properties of Modifiable Projections

Projection Mean Var Scale % Con

Hippocampus

EC to DG, CA3
(perforant pathway)

0.5 0.1 1 25

DG to CA3 (mossy fiber)
(encode/retrieve)

0.9 0.01 15/0 4

CA3 recurrent 0.5 0.1 2 100

CA3 to CA1
(Schaffer collaterals)

0.5 0.1 .3 100

Neocortex

Input to association/MTLc 0.5 0.25 1 25

Mean = mean initial weight strength; Var = variance of initial weight
distribution; Scale = scaling of this projection relative to other projec-
tions; % Con = percentage connectivity.
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